

1

Best Practices for Designing Efficient
Tableau Workbooks
Tableau 10 Edition

Alan Eldridge

Tableau Software

2

About this document
Once again, I would like to acknowledge that this document is a distillation of materials written by

many authors. Much of what I have done is to bring their work together into a single document and

apply some structure. Some people reading this will recognise their fingerprints across sections (in

fact some will recognise entire swathes of text). To all of you I give thanks because without your

continued excellent work and lack of copyright infringement claims this document would not exist.

I would also like to thank the many people who have reviewed this document for accuracy and

readability. Your attention to detail, and patient explanations have made this into a much more

legible document than I could ever have produced on my own.

This document has been updated to reflect the capabilities of Tableau 10. Future releases of Tableau

will provide new features and capabilities that may change some of these recommendations.

Thanks,

Alan Eldridge

June 2016

3

TL;DR
I’m often told by people who have read or recommended this whitepaper that it’s too long. My

response is that it is as long as it needs to be to cover such a broad scope of material at an

appropriate depth.

However, below is a summary of the key points in the document:

 There is no silver bullet for inefficient workbooks. Start by looking at the performance

recorder to understand where the time is going. Long-running queries? Lots of queries? Slow

calculations? Complex rendering? Use this insight to focus your efforts in the right direction.

 The recommendations in this document are just that – recommendations. While they

represent a level of best practice, you need to test if they will improve performance in your

specific case. Many of them can be dependent on structure of your data, and the data

source you are using (e.g. flat file vs. RDBMS vs. data extract).

 Extracts are a quick and easy way to make most workbooks run faster.

 The cleaner your data is and the better it matches the structure of your questions (i.e. the

less preparation and manipulation required), the faster your workbooks will run.

 The majority of slow dashboards are caused by poor design – in particular, too many charts

on a single dashboard, or trying to show too much data at once. Keep it simple. Allow your

users to incrementally drill down to details, rather than trying to show everything then filter.

 Work with the data you need and no more – both in terms of the fields you reference as well

as the granularity of the records you return. It allows Tableau to generate fewer, better,

faster queries and reduces the amount of data that needs to be moved from the data source

to Tableau’s engine. It also reduces the size of your workbooks so they are easier to share

and open faster.

 While reducing the data, make sure you use filters efficiently.

 Strings and dates are slow, numbers and Booleans are fast.

Finally, some of the recommendations in this document only have a material impact if you are

working with big and/or complex data sets. What is big or complex? That depends… but it doesn’t

hurt to follow these recommendations in all your workbooks as you never know when your data will

grow. Practice makes perfect.

4

Contents
About this document .. 2

TL;DR ... 3

Introduction .. 6

What is Tableau good for? .. 6

What is Tableau not good for? ... 6

Understanding efficiency .. 8

What is an “efficient” workbook? ... 8

Why should you care about efficiency? .. 8

The laws of physics ... 9

Tools of the trade .. 11

Performance recorder... 11

Logs ... 13

Tableau Server performance views .. 14

Monitoring and testing ... 15

Other tools .. 15

Is it my workbook design? .. 18

Good dashboard design .. 18

Tweak your dashboard for performance .. 21

Good worksheet design .. 26

Efficient filters ... 32

Is it my calculations? ... 42

Calculation types ... 43

Analytics .. 47

Calculations vs. native features .. 47

Impact of data types ... 47

Performance techniques ... 48

Is it my queries? .. 53

Automatic optimisations ... 53

Joins .. 59

Blending .. 60

Data integration .. 63

Custom SQL ... 64

Alternatives to custom SQL ... 66

Is it my data? ... 68

General advice .. 68

5

Data sources .. 68

Data preparation ... 76

Data extracts ... 77

Data governance ... 83

Is it the environment? ... 85

Upgrade... 85

Test Tableau Desktop on the Server ... 85

Separate refreshes and interactive workloads ... 85

Monitor and tune your Server .. 85

Infrastructure .. 86

Conclusion ... 88

6

Introduction

What is Tableau good for?
At Tableau, we seek to change how people view, interact with, and understand data. As a result, we

do not attempt to deliver the same kind of experience as traditional enterprise BI platforms. Tableau

is at its best when used to create workbooks that are:

 Visual – there is a mountain of evidence that shows the most effective way for humans to

understand large, complex sets of data is through visual representation. Tableau’s default

behaviour is to present data using charts, diagrams and dashboards. Tables and crosstabs

have their place (and are supported) and we will talk more on how to best use them later.

 Interactive – Tableau documents are designed for interactive delivery to users, either on

their desktops, over the web or on a mobile device. Unlike other BI tools that primarily

produce print-focused output (either to actual paper or to a document such as a PDF), the

focus is on creating rich, interactive experiences that allow users to explore data and be

guided through business questions.

 Iterative – discovery is an inherently cyclical process. Tableau is designed to speed the cycle

from question to insight to question so that users can quickly develop a hypothesis, test it

with available data, revise that hypothesis, test it again, and so on.

 Fast – historically the BI process has been slow. Slow to install and configure software, slow

to make data available for analysis and slow to design and implement documents, reports,

dashboards, etc. Tableau allows users to install, connect and develop documents faster than

ever before – in many cases reducing the time to produce an answer from months or weeks

to hours or minutes.

 Simple – traditional enterprise BI tools are often beyond the capability of most business

users, either through cost or complexity. In many cases, users need the assistance of IT or a

power user to help create the queries and documents they want. Tableau provides an

intuitive interface for non-technical users to query and analyse complex data without

needing them to become database or spreadsheet experts.

 Beautiful – they say beauty is in the eye of the beholder, but when it comes to visual

communication there are best practices to be followed. Through features such as “Show Me”,

Tableau guides non-technical users to create effective, understandable charts based on the

data being used.

 Ubiquitous – increasingly, users are no longer creating documents for a single delivery

platform. Users need to view and interact with data on their desktops, over the web, on

mobile devices, embedded in other applications and documents, and more. Tableau allows a

single document to be published and then used across all these platforms without any

porting or redesign.

What is Tableau not good for?
Tableau is a rich and powerful tool but it’s important to understand at the start that there are some

problems for which it is probably not the best solution. This doesn’t mean it can’t do these things –

Tableau can be coaxed to perform many tasks that were not in its original design specification. What

we mean is that these are not the types of problems Tableau was developed to solve and therefore

if you pursue them the effort/reward ratio will likely be unfavourable and the resulting solution may

perform poorly or inflexibly.

We suggest you consider revisiting your requirements or consider another approach if:

7

 You need a document that has been designed for paper, not the screen. By this, we mean if

you have a need to control complex page layouts, need features such as page, section and

group headers/footers, or need precise WYSIWYG formatting. Tableau can produce multi-

page reports but they lack the level of format control that is available in dedicated, banded-

style reporting tools.

 You need a complex push-delivery mechanism for documents with personalisation (also

called “bursting”) sent via multiple delivery modes. Tableau Server includes the concept of

report subscriptions which allows a user to subscribe themselves (and in Tableau 10, others)

to receive a report via email, however customers sometimes want a more flexible solution.

Tableau can be used to create other forms of push-delivery system but this is not a native

feature of Tableau. It requires development of a custom solution built around the TABCMD

utility, or the introduction of 3rd party solutions such as VizAlerts (http://tabsoft.co/1stldFh)

or Push Intelligence for Tableau from Metric Insights (http://bit.ly/1HACxul).

 The primary use case for the reader is to export the data to another format (often a CSV or

Excel file). This often means a tabular report with many rows of detailed data. To be clear,

Tableau does allow users to export data from a view or dashboard to Excel – either at a

summary or detail level. However, when the primary use case is to export data it means this

is an ersatz extract-transform-load (ETL) process. There are much more efficient solutions

than a reporting tool to achieve this.

 You need highly complex, crosstab-style documents that perhaps mirror existing spreadsheet

reports with complex sub-totalling, cross-referencing, etc. Common examples here are

financial reports such as P&L, balance sheet, etc. Additionally, there may be the need for

scenario modelling, what-if analysis and even write-back of assumption data. If the

underlying granular data is not available or if the report logic is based on “cell references”

rather than rolling up records to totals then it might be appropriate to continue using a

spreadsheet for this style of report.

http://tabsoft.co/1stldFh
http://bit.ly/1HACxul

8

Understanding efficiency

What is an “efficient” workbook?
There are several factors that make a workbook “efficient”. Some of these factors are technical and

some more user-focused but in general an efficient workbook is:

 Simple – Is it easy to create the workbook and will it be easy to maintain in the future? Does

it take advantage of the principles of visual analysis to clearly communicate the message of

the author and the data?

 Flexible – Can the workbook answer multiple questions the users want to ask, or just one?

Does it engage the user in an interactive experience or is it simply a static report?

 Fast – Does the workbook respond quickly enough for the users? This could mean time to

open, time to refresh or time to respond to interaction. This is a subjective measure but in

general we want a workbook to provide an initial display of information and to respond to

user interactions within seconds.

The performance of a dashboard is impacted by:

 the visual design at both the dashboard and worksheet levels – e.g. how many elements, how

many data points, use of filters and actions, etc.;

 the calculations – e.g. what kind of calculation, where is the calculation performed, etc.;

 the queries – e.g. how much data is returned, is it custom SQL;

 the data connections and underlying data sources;

 some differences between Tableau Desktop and Tableau Server;

 other environmental factors such as hardware configuration and capacity.

Why should you care about efficiency?
You should care for several reasons:

 working efficiently as an analyst or workbook author gets you to your answer faster;

 working efficiently keeps you in the “flow” of analysis. This means that you are thinking about

the questions and the data, rather than how to manipulate the tool to achieve an outcome;

 creating a workbook with a flexible design reduces the need to create and maintain multiple

workbooks that address similar requirements;

 creating a workbook with a simple design makes it easier for others to pick up your workbook

and make further iterations on your work;

 perceived responsiveness is an important success factor for end users when viewing reports

and dashboards, so making your workbooks run as quickly as possible makes for happier

users.

In our extensive experience, most performance problems that customers encounter are due to

mistakes in workbook design. If we can fix these mistakes – or better yet, through education prevent

them in the first place – then we can fix the problems.

If you are working with small data volumes, many of these recommendations are not critical. You

can just brute-force your way through the problem. However, when you are dealing with hundreds

of millions of records, many workbooks or multiple authors the effects of poor workbook design are

amplified and you must give more thought to the guidance in this whitepaper.

9

Of course, practice makes perfect and following these guidelines for all workbooks is recommended.

Remember, your design is not complete until you have tested your workbook over the expected

production data volumes.

One important note – throughout this document we refer to Tableau Server but in most places the

guidance is also appropriate for Tableau Online if you prefer to use our hosted solution over an on-

premises deployment. The obvious exceptions are points on tweaking/tuning server configuration

parameters and on installing/updating software on the server tier – in the SaaS world these are

being looked after for you!

The laws of physics
Before we dive into the technical details of how various features affect the performance of

workbooks, there are some basic tenets that will help you author efficient dashboards and reports:

If it is slow in the data source, it will be slow in Tableau
If your Tableau workbook is based on a slow running query, then your workbook will also be slow. In

the following sections we will identify tuning tips for your databases to help improve the time it

takes for queries to run. Additionally, we’ll discuss how Tableau’s fast data engine can be used to

improve query performance.

If it is slow in Tableau Desktop, it will (almost always) be slow in Tableau Server
A workbook that performs slowly in Tableau Desktop won’t get any faster by publishing it to Tableau

Server. Often users have a perception that their workbook will run faster in Tableau Server because

the server has more CPU/RAM/etc. than their local PC. In general, workbooks will perform slightly

slower on Tableau Server because:

 there are multiple users all sharing the server resources to generate workbooks

simultaneously (although counterintuitively, you might find that your workbook responds

more quickly as you start to share it, due to the caching mechanisms within Tableau Server);

and

 the server has to do additional work to render the dashboards and charts rather than this

being done on the client workstation.

You should invest your initial efforts tuning your workbook in Tableau Desktop before you start

looking to tune the performance in Tableau Server.

The exception to this rule is if Tableau Desktop is encountering resource limits that aren’t present on

the server – e.g. your PC does not have enough RAM to support the data volume you are analysing,

or the server has a faster/lower latency connection to the data source. Some users encounter slow

performance or even “out of memory” errors when working with a data set on their low-spec, 2GB

RAM workstation, but find performance of the published workbook to be acceptably fast because

the server has far more memory and processing power.

Newer is better
The development team at Tableau are constantly working to improve the performance and usability

of our software. Upgrading to the latest release of Tableau Desktop and Tableau Server can

sometimes yield significant improvements in performance without requiring any changes to the

workbook. For example – many customers reported 3x (and more) performance improvements in

their workbooks just by upgrading from V8 to V9 and performance improvement continues to be a

10

focus of Tableau 10 and beyond. Of course, this isn’t an issue with Tableau Online as it is always

being upgraded to the latest versions as they are released.

This goes for maintenance releases as well as major/minor releases. You can get more information

about the Tableau release cycle and specific details for each release on the release notes page:

 http://tabsoft.co/1Oy3LZT

Additionally, database vendors are working to improve their offerings. Make sure you are also using

the latest version of the appropriate data source driver as listed on the following web page:

http://tabsoft.co/1RjD4sy

Less is more
As with all things in life, too much of a good thing can be bad. Don’t try to put absolutely everything

into a single, monolithic workbook. While a Tableau workbook can have 50 dashboards, each with

20 chart objects, talking to 50 different data sources, it will almost certainly perform slowly.

If you find yourself with a workbook like this, consider breaking it into several separate files. This is

easy to do – you can simply copy dashboards between workbooks and Tableau will bring all the

associated worksheets and data sources. If your dashboards are overly complex, consider simplifying

them and using interactions to guide the end users from report to report. Remember, we don’t price

our software by the document so feel free to spread the data out a little.

Scalability is not the same as performance
Scalability is about ensuring that we can support multiple users viewing shared workbooks.

Performance is about ensuring that an individual workbook runs as quickly as possible. While many

of the recommendations offered in this document will have a positive influence on scalability for

workbooks published to Tableau Server, the principal focus of this document is about improving

performance.

http://tabsoft.co/1Oy3LZT
http://tabsoft.co/1RjD4sy

11

Tools of the trade
In order to understand the performance of your workbooks, you need to understand a) what is

happening and b) how long it is taking. This information is captured in multiple locations depending

on where you are running the workbook (i.e. in Tableau Desktop or Tableau Server) and at multiple

levels of detail. This section outlines the various options available.

Performance recorder
The first place you should look for performance information is the Performance Recorder feature of

Tableau Desktop and Tableau Server. In Tableau Desktop you enable this feature under the Help

menu:

Fire up Tableau and start performance recording, then open your workbook (it's best practice to not

have other workbooks open while doing this so you are not inadvertently competing for resources).

Interact with it as if you were an end user and when you feel you have gathered enough data go

back in the help menu and stop recording. Another Tableau Desktop window will open at this point

with the data captured:

12

You can now identify the actions in the workbook that take the most time - for example in the above

image the selected query from the Timeline worksheet takes 30.66 seconds to complete. Clicking on

the bar shows the text of the query being executed. As the output of the performance recorder is a

Tableau Workbook, you can also create additional views to explore this information in other ways.

Note: by default, events that take < 0.1 secs are not shown. You can include these by

adjusting the filter at the top of the dashboard however your focus should be on the long-

running tasks. Setting it to 1 sec is good practice.

It is also possible to create performance recordings on Tableau Server to help identify issues that

arise when the workbook is published. By default, performance recording is not enabled on Tableau

Server – this is a feature that can be controlled on a per-site basis.

A server administrator can enable performance recording site by site.

1. Navigate to the site for which you want to enable performance recording.

2. Click Settings:

3. Under Workbook Performance Metrics, select Record workbook performance metrics.

4. Click Save.

13

When you want to create a performance recording:

1. Open the view for which you want to record performance. When you open a view, Tableau

Server appends ":iid=<n>" after the URL. This is a session ID. For example:

http://<tableau_server>/#/views/Coffee_Sales2013/USSalesMarginsByAreaCode?:i

id=1

2. Type :record_performance=yes& at the end of the view URL, immediately before the

session ID. For example:

http://<tableau_server>/#/views/Coffee_Sales2013/USSalesMarginsByAreaCode?:r

ecord_performance=yes&:iid=1

3. Load the view.

A visual confirmation that performance recording has started is the Performance option in the view

toolbar:

When you are done and ready to view the performance recording:

1. Click Performance to open a performance workbook. This is an up-to-the-minute snapshot

of performance data. You can continue taking additional snapshots as you continue working

with the view; the performance data is cumulative.

2. Move to a different page or remove :record_performance=yes from the URL to stop

recording.

You should use this information to identify those sections of a workbook that are the best

candidates for review - i.e. where can you get the best improvement for the time you spend? More

information on interpreting these recordings can be found in the following link:

 http://tabsoft.co/1RdF420

Logs
In Tableau you can find the full query text by looking in the log file. The default location is

C:\Users\<username>\Documents\My Tableau Repository\Logs\log.txt. This file is quite

verbose and is written as JSON encoded text, so a good text editor such as Notepad++ or Sublime is

recommended to wrangle it. If you search for “begin-query” or “end-query” you can find the query

string being passed to the data source. Looking at the “end-query” log record will also show you the

time it took for the query to run and how many records were returned to Tableau:

{"ts":"2015-05-

24T12:25:41.226","pid":6460,"tid":"1674","sev":"info","req":"-","sess":"-

","site":"-","user":"-","k":"end—query",

"v":{"protocol":"4308fb0","cols":4,"query":"SELECT

[DimProductCategory].[ProductCategoryName] AS

[none:ProductCategoryName:nk],\n

http://tabsoft.co/1RdF420

14

[DimProductSubcategory].[ProductSubcategoryName] AS

[none:ProductSubcategoryName:nk],\n SUM(CAST(([FactSales].[ReturnQuantity])

as BIGINT)) AS [sum:ReturnQuantity:ok],\n SUM([FactSales].[SalesAmount]) AS

[sum:SalesAmount:ok]\nFROM [dbo].[FactSales] [FactSales]\n INNER JOIN

[dbo].[DimProduct] [DimProduct] ON ([FactSales].[ProductKey] =

[DimProduct].[ProductKey])\n INNER JOIN [dbo].[DimProductSubcategory]

[DimProductSubcategory] ON ([DimProduct].[ProductSubcategoryKey] =

[DimProductSubcategory].[ProductSubcategoryKey])\n INNER JOIN

[dbo].[DimProductCategory] [DimProductCategory] ON

([DimProductSubcategory].[ProductCategoryKey] =

[DimProductCategory].[ProductCategoryKey])\nGROUP BY

[DimProductCategory].[ProductCategoryName],\n

[DimProductSubcategory].[ProductSubcategoryName]","rows":32,"elapsed":0.951}

}

If you are looking on Tableau Server, the logs are in C:\ProgramData\Tableau\Tableau

Server\data\tabsvc\vizqlserver\Logs.

Tableau Server performance views
Tableau Server comes with several views for administrators, to help monitor activity on Tableau

Server. The views are located in the Analysis table on the server’s Maintenance page:

More information on these views can be found at the following link:

http://tabsoft.co/1RjCCL2

Additionally, custom administrative views can be created by connecting to the PostgreSQL database

that makes up part of the Tableau repository. Instructions can be found here:

http://tabsoft.co/1RjCACR

http://tabsoft.co/1RjCCL2
http://tabsoft.co/1RjCACR

15

Monitoring and testing

TabMon
TabMon, is an open source cluster monitor for Tableau Server that allows you to collect

performance statistics over time. TabMon is community-supported, and we are releasing the full

source code under the MIT open source license.

TabMon records system health and application metrics out of the box. It collects built-in metrics like

Windows Perfmon, Java Health, and Java Mbean (JMX) counters on Tableau Server machines across

a network. You can use TabMon to monitor physical (CPU, RAM), network, and hard-disk usage. You

can track cache-hit ratio, request latency, active sessions, and much more. It displays the data in a

clean, unified structure, making it easy to visualize the data in Tableau Desktop.

TabMon gives you full control over which metrics to collect and which machines to monitor, no

scripting or coding required. All you need to know is the machine and the metric name. TabMon can

run both remotely and independently of your cluster. You can monitor, aggregate, and analyze the

health of your cluster(s) from any computer on your network with almost no added load to your

production machines.

You can find more information on TabMon here:

 http://bit.ly/1ULFelf

TabJolt
TabJolt is a “point-and-run” load and performance testing tool specifically designed to work easily

with Tableau Server. Unlike traditional load-testing tools, TabJolt can automatically drive load

against your Tableau Server without script development or maintenance. Because TabJolt is aware

of Tableau’s presentation model, it can automatically load visualizations and interpret possible

interactions during test execution.

This allows you to just point TabJolt to one or more workbooks on your server and automatically

load and execute interactions on the Tableau views. TabJolt also collects key metrics like average

response time, throughput, and 95th percentile response time, and captures Windows performance

metrics for correlation.

Of course, even with TabJolt, users should have sufficient knowledge of Tableau Server’s

architecture. Treating Tableau Server as a black box for load testing is not recommended, and will

likely yield results that aren’t in line with your expectations. Tabjolt is an automated tool and cannot

easily replicate the variety of human interaction, so consider carefully if your Tabjolt results reflect

real-world outcomes.

You can find more information on TabJolt here:

 http://bit.ly/1ULFtgi

Other tools
There are some other 3rd party tools available that will help you identify the performance

characteristics of your workbooks. One option is “Power Tools for Tableau” by Interworks which

includes a performance analyser (similar to the built-in performance recorder) that allows you to

drill in and understand what sheets and queries are taking the longest time:

http://bit.ly/1ULFelf
http://bit.ly/1ULFtgi

16

Palette Software also have a product called Palette Insight that captures performance information

from Tableau Server and allows you to do capacity planning, identify resource-intensive users and

workbooks, do user access auditing and build chargeback models.

Additionally, most modern DBMS platforms include admin tools that allow the tracing and analysis

of running queries. Your DBA can be a source of great assistance if your performance recordings

indicate query run time is a key factor.

17

If you believe the interaction with the client browser and the server is an issue, you can also look at

tools like Telerik Fiddler or your browser’s developer tools to take a deeper look at the traffic

between client and server.

18

Is it my workbook design?
Working in Tableau is a new experience for many users and there are design techniques and best

practices they need to learn in order to create efficient workbooks. However, we find many new

users try to apply old design approaches with Tableau and get lacklustre results. This section aims to

address some the design principles that reflect best practice.

Good dashboard design
With Tableau, you are creating an interactive experience for your end users. The final result

delivered by Tableau Server is an interactive application that allows users to explore the data rather

than just viewing it. So to create an efficient Tableau dashboard, you need to stop thinking as if you

were developing a static report.

Here’s an example of a dashboard type we see many new authors create – especially if they have

previously worked in tools like Excel or Access, or if they come from a background of using

“traditional” reporting tools. We start here with a tabular report showing “everything” and a series

of filters that allow the user to refine the table until it shows the few records they are interested in:

This is not a “good” Tableau dashboard (in fact, it’s not a “good” dashboard at all). At worst it’s a

glorified data extract process because the user wants to take the data to another tool like Excel for

further analysis and charting. At best it indicates that we don’t really understand how the end user

wants to explore the data, so we take the approach of “based on your starting criteria, here’s

everything… and here are some filter objects so you can further refine the result set to find what

you’re really after”.

Now consider the following reworking – it’s exactly the same data. We start here at the highest level

of aggregation:

Selecting one or more of the elements shows the next level of detail:

19

We keep doing this, each time revealing more detail:

Until we finally reveal the ultimate level – the same data that was shown in the crosstab dashboard

above.

Don’t focus on the presentation of the data (that is important but it’s a topic for later). Instead, think

about the experience of using this dashboard. Notice how it flows in a natural path, left to right, top

to bottom. There can be a lot of data underlying this example but the dashboard guides the end user

to drill down gradually to find the focused set of detail records they seek.

The key difference to the two examples provided about is how they guide the end user through the

analytic process. The first example starts wide (showing all the possible records you could look at)

and then makes the end user reduce the number of records displayed by applying filters. There are

inherent problems with this technique:

20

 The initial query that must be run before anything is shown to the end user is essentially the

biggest query you can ask – “give me all records”. Over any real-world data set this is going to

take a substantial time to execute and stream back to the Tableau engine. The “first contact”

experience is critical for setting an end-user’s perception of the solution and if it takes more

than a few seconds before anything happens the perception will be a negative one.

 Creating a view with hundreds of thousands to millions of marks (each cell in a crosstab is

called a mark) requires a lot of CPU and memory. It also takes time – adding to the negative

perception of system responsiveness. On Tableau Server, having many people all generating

large crosstabs can result in slow performance, and in a worst case scenario the system could

run out of memory. This can cause server stability issues, errors and all kinds of unpleasant

experiences for end users. Of course you could add more memory to the server to minimise

this but this is treating the symptom, not the cause.

 Finally, the users have no contextual guidance on whether their initial set of filters will be too

wide or too narrow. How is a report user to know that if they check all available categories

their initial query will return tens of thousands of records and exhaust all available RAM on

the server? They can’t, other than through painful experience.

Contrast this with the second approach where our initial query shows the highest level of

aggregation only:

 The initial query that must be run is highly aggregated and consequently returns only a

handful of records. For a well-designed database this is a very efficient activity so the “first

contact” response time is very fast, leading to a positive perception of the system. As we drill

down, each subsequent query is both aggregated and constrained by the selections from the

higher level. They continue to be fast to execute and return to the Tableau engine.

 Although we have more views when the dashboard is fully completed, each view only shows

a few dozen marks. The resources necessary to generate each of these views, even when

many end users are active on the system, are trivial and it is now much less likely that the

system will run out of memory.

 Finally, you can see that for the higher “navigation” levels we’ve taken the opportunity to

show the volume of sales in each category. This gives the user some context on whether this

selection contains many records or few. We’ve also used colour to indicate the profitability of

each category. Now this becomes extremely relevant as you will be able to see which specific

areas require attention, rather than just navigating blindly.

Keep it simple
A common mistake for new users is they create dashboards that are overly “complex”. Perhaps they

are trying to recreate a document they had previously used from another tool, or perhaps they are

trying to create something that is specifically designed to be a printed report. The end result is a

workbook that performs slowly and inefficiently.

The following points are contributors to complexity:

Too many worksheets per dashboard

A common mistake new users make is to try and put lots and lots of charts/worksheets on a single

dashboard.

21

Be aware that each worksheet is going to run one (and probably more) queries against the data

sources, so the more sheets the longer it is going to take to render the dashboard. Take advantage

of the fact that Tableau is designed to deliver interactive dashboards to end users, so spread the

data out across multiple dashboards/pages.

Too many filter cards

Filter cards are a very powerful feature of Tableau that allow us to create rich, interactive

dashboards for end users. However, each filter can require a query in order to enumerate the

options so adding too many to your dashboard can unexpectedly cause the dashboard to take a long

time to render. Also, when you use “show relevant values” on a filter, it requires a query to update

the shown values each time other filters are changed. Use this feature sparingly.

Also, if you have your filters applied to multiple worksheets, be aware that each change will trigger

multiple queries as all the affected worksheets that are visible will update (non-visible worksheets

are not run). If this takes seconds to complete it can give a poor user experience. If you expect users

to make several changes to a multi-select filter type, consider showing the “apply” button so the

user can trigger the update when they are done changing their selections.

Tweak your dashboard for performance
Once we have ensured our dashboard is as simple as can be, we can tweak our design to take

advantage of caching for further performance improvement.

22

Fixed-size dashboards
One of the easiest things we can do to improve performance is to check that your dashboard is a

fixed size.

Part of the rendering process in Tableau is creating a layout – how many rows/columns to display for

small multiples and crosstabs; the number and interval of axis ticks/grid lines to draw; the number

and location of mark labels to be shown; etc. This is determined by the size of the window in which

the dashboard will be displayed.

If we have multiple requests for the same dashboard but from windows of different sizes, we would

need to generate a layout for each request. By setting the dashboard layout to a fixed size we ensure

that we only need to create a single layout that can be reused across all requests. For server-side

rendering this is even more important as fixed size dashboards mean we can also cache and share

the bitmaps that are rendered on the server, improving both performance and scalability.

Device specific dashboards
In Tableau 10 we are introducing a new feature called device specific dashboards. This capability

allows you to create custom dashboard layouts that are automatically selected based on the device

being used.

We select the layout to use based on screen size:

 <= 500px on smallest axis – phone

 <= 800px on smallest axis – tablet

 > 800px – desktop

23

Given that different devices will have different screen sizes within those ranges and because devices

can rotate, you will generally want to set phone/tablet layouts to auto-resize. This will give the best

viewing experience across the devices, however it will impact cache reuse (both the presentation

model cache and the image tile cache for server-side rendering). In general, the benefit of sizing

properly for the device will outweigh the impact on caching but it is something to consider. Note

that once users start to use the workbook you will eventually populate the models and bitmaps for

most common screen sizes and performance will improve.

Using the viz level of detail to reduce queries
Although best practice is generally to only use the fields you need for each worksheet, sometimes

we can improve performance by pulling more information on one worksheet to avoid queries on

another. Consider the following dashboard:

Building this as one would expect, the execution plan will result in two queries – one for each

worksheet:

SELECT [Superstore APAC].[City] AS [City],
 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]
FROM [dbo].[Superstore APAC] [Superstore APAC]
GROUP BY [Superstore APAC].[City]

SELECT [Superstore APAC].[Country] AS [Country],
 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]
FROM [dbo].[Superstore APAC] [Superstore APAC]
GROUP BY [Superstore APAC].[Country]

24

If we make a change to our dashboard design and add Country to the Cities worksheet (on the Detail

shelf), Tableau can complete the dashboard with just a single query. Tableau is smart enough to run

the query for the Cities worksheet first and then use the query results cache to provide the data for

the Countries worksheet. This feature is called “query batching”.

SELECT [Superstore APAC].[City] AS [City],
 [Superstore APAC].[Country] AS [Country],
 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]
FROM [dbo].[Superstore APAC] [Superstore APAC]
GROUP BY [Superstore APAC].[City],
 [Superstore APAC].[Country]

Clearly this can’t be done in all cases as adding a dimension to the viz alters the level of detail so it

could result in more marks being displayed. However, when you have a hierarchical relationship in

your data like the above example, this is a useful technique as it won’t affect the visible level of

detail.

Using the viz level of detail to optimise actions
We can use a similar approach with actions to reduce the number of queries we need to run.

Consider the same dashboard from above (prior to optimisation), but now we add a filter action

from the Countries worksheet to the Cities worksheet.

25

When we trigger this action by clicking on a mark on the map, we see that Tableau needs to run a

query to determine the values in the Cities worksheet. This is because there is no data in the query

result cache on the city-country relationship.

SELECT [Superstore APAC].[City] AS [City],
 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]
FROM [dbo].[Superstore APAC] [Superstore APAC]
WHERE ([Superstore APAC].[Country] = 'Australia')
GROUP BY [Superstore APAC].[City]

If we add Country to the Cities worksheet, we now have sufficient information in the query result

cache that we can do these filters without needing to go back to the data source.

We can similarly optimise in situations where the source worksheet is more detailed than the target.

If we were to take the default action definition where we filter using “all fields”:

This causes the workbook to run a query for each action because the filter clause references Country

and City which can’t be served from the query result cache for the Countries worksheet.

26

SELECT [Superstore APAC].[Country] AS [Country],
 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]
FROM [dbo].[Superstore APAC] [Superstore APAC]
WHERE (([Superstore APAC].[City] = 'Sydney') AND ([Superstore APAC].[Country] =
'Australia'))
GROUP BY [Superstore APAC].[Country]

If we change the action to just filter based on Country:

We can now satisfy this filter from the query result cache so we don’t need to query back to the data

source. As above, you need to consider if changing the level of detail will affect the design of your

sheet – if not then this can be a useful technique.

Good worksheet design
The next level down from the dashboard is the worksheet. In Tableau the design of the worksheet is

intrinsically related to the queries that are run. Each worksheet will generate one or more queries,

so at this level we are trying to ensure we generate the most optimal queries possible.

Only include the fields you need.
Look at the detail shelf and remove any fields that aren’t directly used on the viz, needed in the

tooltip or required to drive the required level of mark detail. This makes the query faster in the data

source, and requires less data to be returned in the query results. There are some exceptions to this

rule as we’ve already explored – to help query batching eliminate similar queries in other

worksheets – however these are less common and are dependent on not changing the visual level of

detail of the sheet.

Show the minimum number of marks to answer the question
In Tableau there are often multiple ways to calculate the same number. Consider the following

dashboard – both worksheets answer the question “what is the average order size per country?”

27

Sheet 1 only shows a single mark, representing the average order size for each country, so we only

return 23 records from the data source. However, the Sheet 2 shows a mark for each order within

each country and then calculates the average as a reference line. This requires us to fetch 5436

records from the data source.

Sheet 1 is the better solution if we are just interested in the original question – what is the average

order size per country – however Sheet 2 answers this but also offers deeper insights into the range

of order sizes, allowing us to identify outliers.

Avoid highly complex vizzes
An important metric to look at is how many data points are being rendered in each viz. You can

easily find this by looking at the status bar of the Tableau Desktop window:

28

While there is no hard and fast rule on what defines “too many marks” be aware that more marks

mean more CPU and RAM is required to render them. Watch out for large crosstabs, scatterplots

and/or maps with complex custom polygons.

Maps

Custom geocoding

When you import a custom geocoding role, it is written into the geocoding database – a Firebird DB

file that is by default stored in C:\Program Files\Tableau\Tableau 10.0\Local\data\geocoding.fdb. If

you use the role in a workbook and save it as a packaged workbook, the entire database file is

compressed into the TWBX file – all 350-ish MB of it!

29

This makes the resulting TWBX file a) very large as the geocoding payload is about 110MB

compressed; and b) quite slow to open as the initial decompression has to operate over a much

larger data set. A more efficient approach is to not import the data as a custom geocoding role, but

rather to use blending within the workbook to combine the analytic data with the geospatial data.

Using this approach, the geocoding.fdb file is not embedded and the TWBX only contains the

analytic and custom geocoding data.

Custom territories

A new feature of Tableau 10 is custom territories where users can combine areas from the internal

geocoding databases to create aggregated regions.

30

The initial rendering of custom territories based on many lower-level regions can be very slow so use

this capability cautiously. Once completed though, the custom territories are cached and good

performance can be expected.

Filled maps vs. point maps

Filled map marks (whether used on a map or as a mark on some other type of chart) are expensive

when using client-side rendering as we need to send over the polygon data for the shape and this

can be quite complex. Consider using a symbol map instead if you are seeing slow rendering

performance.

Polygon marks

Any vizzes that use polygon marks will force Tableau Server to perform server-side rendering which

can impact the end user experience. Use them sparingly.

Other factors

Large crosstabs

In earlier versions of this document we recommended you to avoid large crosstabs as they rendered

very slowly. The underlying mechanics of this viz type have been improved in recent releases and

crosstabs now render as quickly as other small multiple chart types. However, we still advise you to

think carefully about using large crosstabs as they require lots of data to be read from the underlying

data source and are not analytically useful.

Tooltips

By default, placing a dimension on the tooltip shelf causes it to be aggregated using the ATTR()

attribute function. This requires two aggregations to be performed in the underlying data source –

MIN() and MAX() – and both results to be passed back in the result set. See the using ATTR() section

later in the document for more information.

31

If you are not concerned with the possibility of having multiple dimension values, a more efficient

solution is to just use one aggregation instead of the default ATTR(). Pick either MIN() or MAX() – it

doesn’t matter which you use, but pick one and stick to it to maximise your chances of a cache hit.

Another option – if you know it won’t affect the visual level of detail of your viz – is to place the

dimension on the level of detail shelf instead of the tooltip shelf. This results in the dimension field

being used directly in the SELECT and GROUP BY clauses of the query. We recommend you test if this

will perform better than the single aggregation as it can depend on the performance of your data

platform.

Legends

Generally, legends are not a cause of performance problems as their domains are fulfilled from the

query result cache. However, they can add to the rendering overhead if the enumerated domain is

large because the data needs to be transferred to the client browser. If this is the case the legend is

generally not useful, so just remove it.

Page shelf

Some users think that the page shelf works in the same way as the filter shelf – that it reduces the

number of records being returned from the data source. This is not correct – the query for the

worksheet will return records for all marks across all pages. If you have a page dimension with a high

degree of cardinality (i.e. lots of unique values) this can increase the size of the worksheet query

significantly, affecting performance. Use this capability sparingly.

Client-side vs. server-side rendering

Before a view's marks and data are displayed in a client web browser, they are retrieved,

interpreted, and rendered. Tableau Server can perform this process in the client web browser or on

the server. Client-side rendering is the default mode because handling the rendering and all

interaction on the server can result in more network data transfer and round-trip delays. With client-

side rendering, many view interactions are faster because they are interpreted and rendered right

there in the browser.

(Blue - done on server; orange - done in client browser.)

Some views, however, are more efficiently rendered on the server where there's more computing

power. Server-side rendering makes sense for a view that is complex to the extent that image files

take up significantly less bandwidth than the data used to create the images. Also, because tablets

usually have much slower performance than PCs, they can handle less view complexity. The trade-

off though is that simple interactions such as tooltips and highlighting can be slow in server-side

rendering as they require a server round-trip.

32

(Blue - done on server; orange - done in client browser.)

Tableau Server is configured to automatically handle all of these situations using a complexity

threshold as the trigger for rendering a view on the server instead of in the web browser. The

threshold is different for PCs and mobile devices so there are cases where a view opened from a PC

web browser might be client-rendered but the same view opened from a tablet web browser is

server-rendered. Filtering can also change the rendering behaviour – a workbook might initially open

using server-side rendering but then change to client-side rendering when a filter is applied. Also, if a

viz uses polygon marks or the pages shelf it will only use server-side rendering, even if it would

otherwise meet the criteria for client-side rendering, so use these features with caution.

As an administrator, you can test or fine tune this setting for both PCs and tablets. See the following

link for more details:

 http://tabsoft.co/1WgBLLh

Efficient filters
Filtering in Tableau is extremely powerful and expressive. However, inefficient filters are one of the

most common causes of poorly performing workbooks and dashboards. The following sections lay

out a number of best practices for working with filters.

Note – the efficiency of filters is dramatically impacted by the presence and maintenance of indexes

in the data source. See the section on indexes for more detail.

Filter types

Filter priority

In Tableau, filters are applied in the following order:

http://tabsoft.co/1WgBLLh

33

Extract filters

These filters are only applicable when using data extracts, but in that case are logically applied

before all other filters. They limit the data that is fetched from the underlying data source, and can

be either dimension or measure filters. Additionally, they can perform either a TOP or SAMPLE to

reduce the number of records returned, depending on the source data platform.

Data source filters

Data source filters are the highest level of filter available on live connections. A key difference

between data source filters and context filters is that data source filters are scoped to the whole

data source whereas context filters are set for each worksheet. This means that when used in a

published data source, data source filters can be enforced whereas context filters are applied at the

worksheet level.

Data source filters can be an effective way of putting a constraint on a data source to prevent end

users from accidentally running a massive query – e.g. you could put a data source filter limiting

queries on a transaction table to only be for the last 6 months.

Context filters

By default, all filters that you set in Tableau are computed independently. That is, each filter

accesses all rows in your data source without regard to other filters. However, by specifying a

context filter you can make any other filters that you define dependent because they process only

the data that passes through the context filter.

You should use context filters when they are required to get the correct answer (e.g. a filtered

TopN). For example, consider a view that shows the top 10 products by SUM(Sales), filtered by

region. Without a context filter, the following query is run:

SELECT [Superstore APAC].[Product Name] AS [Product Name],

 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[Superstore APAC] [Superstore APAC]

 INNER JOIN (

 SELECT TOP 10 [Superstore APAC].[Product Name] AS [Product Name],

 SUM([Superstore APAC].[Sales]) AS [$__alias__0]

 FROM [dbo].[Superstore APAC] [Superstore APAC]

 GROUP BY [Superstore APAC].[Product Name]

 ORDER BY 2 DESC

) [t0] ON ([Superstore APAC].[Product Name] = [t0].[Product Name])

WHERE ([Superstore APAC].[Region] = 'Oceania')

GROUP BY [Superstore APAC].[Product Name]

This returns the contribution in Oceania for the global top 10 products. If what you really wanted

was the top 10 products within the Oceania region, you would add the Region filter to the context

and the following query would be run:

SELECT TOP 10 [Superstore APAC].[Product Name] AS [Product Name],

 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok],

 SUM([Superstore APAC].[Sales]) AS [$__alias__0]

FROM [dbo].[Superstore APAC] [Superstore APAC]

WHERE ([Superstore APAC].[Region] = 'Oceania')

GROUP BY [Superstore APAC].[Product Name]

ORDER BY 3 DESC

Historically, context filters were implemented as a temp table in the data source. This is no longer

the case – in almost all situations context filters are implemented as part of the data source query

(as shown above) or processed locally in the data engine.

34

You should no longer use context filters as a mechanism for improving query performance.

Filtering categorical dimensions
Consider the following visualisation – a map of Australia with marks by postcode:

There are several ways we could filter the map to just show the postcodes for Western Australia (the

orange dots):

 We could select all the marks in WA and keep-only the selection;

 We could select all the marks outside of WA and exclude the selection;

 We could keep-only on another attribute such the State dimension;

 We could filter by range – either on the postcode values or the latitude/longitude values.

Discrete

Using the first two options we would find the keep-only and exclude options perform poorly – in fact

they can often be slower than the unfiltered data set. This is because they are expressed as a

discrete list of postcode values that are filtered in or out by the DBMS – either through a WHERE IN

clause or, if there are many values, by creating a temp table populated with the selected values and

using an INNER JOIN with this and the main table(s). For a large set of marks this can result in a very

expensive query to evaluate.

The third option is fast in this example because the resulting filter (WHERE STATE=”Western

Australia”) is very simple and can be efficiently processed by the database. However, this

approach becomes less effective as the number of dimension members needed to express the filter

increases – eventually approaching the performance of the lasso and keep-only option.

Range of value

Using the range of values filter approach also allows the database to evaluate a simple filter clause

(either WHERE POSTCODE >= 6000 AND POSTCODE <= 7000 or WHERE LONGITUDE < 129) resulting in

fast execution. However, this approach, unlike a filter on a related dimension, doesn’t become more

complex as we increase the cardinality of the dimensions.

The take-away from this is that range of value filters are often faster to evaluate than large itemised

lists of discrete values and they should be used in preference to a keep-only or exclude for large

mark sets if possible.

35

Slicing filters

Slicing filters are filters on dimensions that are not used in the viz (i.e. they are not part of the viz

level of detail). For example, you might have a viz showing total sales by country, but the viz is

filtered by region. In this example the query run is as follows:

SELECT [Superstore APAC].[Country] AS [Country],

 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[Superstore APAC] [Superstore APAC]

WHERE ([Superstore APAC].[Region] = 'Oceania')

GROUP BY [Superstore APAC].[Country]

These filters become more complex if we are slicing on the result of an aggregation. For example, if

we filtered the above viz not by region, but to show the sales for the top 10 profitable products,

Tableau needs to run two queries – one at the product level to isolate the top 10 profitable

products, and another at the country level restricted by the results of the first query:

SELECT [Superstore APAC].[Country] AS [Country],

 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[Superstore APAC] [Superstore APAC]

 INNER JOIN (

 SELECT TOP 10 [Superstore APAC].[Product Name] AS [Product Name],

 SUM([Superstore APAC].[Profit]) AS [$__alias__0]

 FROM [dbo].[Superstore APAC] [Superstore APAC]

 GROUP BY [Superstore APAC].[Product Name]

 ORDER BY 2 DESC

) [t0] ON ([Superstore APAC].[Product Name] = [t0].[Product Name])

GROUP BY [Superstore APAC].[Country]

Use caution when using slicing filters as they can be expensive to evaluate. Also note that because

the dimension isn’t part of the query result cache, we cannot do fast in-browser filtering on slicing

filters (see the earlier section about client-side vs. server-side rendering).

Cross data source filters

Cross data source filtering is a new feature in Tableau 10. It allows a filter to be applied to multiple

data sources that have one or more fields in common. Relationships are defined the same way as for

blending – automatically based on name/type matches or manually via custom relationships in the

Data menu.

Cross-database filters have the same performance implications as quick filters on a dashboard.

When you change them they can cause multiple zones to update, potentially requiring multiple

queries. Use them judiciously, and if you expect users to make multiple changes, consider showing

the “apply” button to only fire queries when selections are complete.

Note also that the domain of the filter is taken from the “primary” data source – i.e. the first-used

data source of the sheet where the filter was created. If a related field has different domains in

different data sources, you need to be careful which one you use as the same filter can end up

showing different values, as shown below:

36

Filtering dates: discrete, range, relative
Date fields are a special kind of dimension that Tableau often handles differently than standard

categorical data. This is especially true when you are creating date filters. Date filters are extremely

common and fall into three categories: Relative Date Filters, which show a date range that is relative

to a specific day; Range of Date Filters, which show a defined range of discrete dates; and Discrete

Date Filters, which show individual dates that you’ve selected from a list. As shown in the section

above, the method used can have a material impact on the efficiency of the resulting query.

Discrete

37

Sometimes you may want to filter to include specific individual dates or entire date levels. This type

of filter is called a discrete date filter because you are defining discrete values instead of a range.

This filter type results in the date expression being passed to the database as a dynamic calculation:

SELECT [FactSales].[Order Date], SUM([FactSales].[SalesAmount])

FROM [dbo].[FactSales] [FactSales]

WHERE (DATEPART(year,[FactSales].[Order Date]) = 2010)

GROUP BY [FactSales].[Order Date]

In most cases, query optimisers will intelligently evaluate the DATEPART calculation, however there

are some scenarios where using discrete date filters can result in poor query execution. For example,

querying a partitioned table with a discrete date filter on the date partition key. Because the table

isn’t partitioned on the DATEPART value, some databases will go off and evaluate the calculation

across all partitions to find records that match the criteria, even though this isn’t necessary. In this

case, you may see much better performance by using a “range of date” filter or a relative date filter

with a specified anchor date.

One way to optimise performance for this type of filter is to materialise the calculation using a data

extract. First, create a calculated field that implements the DATEPART function explicitly. If you then

create a Tableau data extract, this calculated field will be materialised as stored values in the extract

(because the output of the expression is deterministic). Filtering on the calculated field instead of

the dynamic expression will be faster because the value can simply be looked up, rather than

calculated at query time.

Range of date

This type of filter is used when you want to specify a range of contiguous dates. It results in the

following query structure being passed to the database:

SELECT SUM([factOrders].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[factOrders] [factOrders]

WHERE (([factOrders].[Order Date] >= {d '2015-01-01'}) AND

([factOrders].[Order Date] <= {d '2016-12-31'}))

GROUP BY ()

This type of WHERE clause is very efficient for query optimisers, allowing execution plans to leverage

indexes and partitions to full effect. If you are observing slow query times when you add discrete

date filters, consider replacing them with ranged date filters and see if that makes a difference.

38

Relative

A relative date filter lets you define a range of dates that updates based on the date and time you

open the view. For example, you may want to see Year to Date sales, all records from the past 30

days, or bugs closed last week. Relative date filters can also be relative to a specific anchor date

rather than today.

SELECT SUM([factOrders].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[factOrders] [factOrders]

WHERE (([factOrders].[Order Date] >= {ts '2015-01-01 00:00:00'}) AND

([factOrders].[Order Date] < {ts '2017-01-01 00:00:00'}))

GROUP BY ()

As you can see, the resulting WHERE clause uses a range of dates syntax so this is also an efficient

form of date filter.

Note that due to the changing nature of date filters that are relative to the current date/time - either

via the relative date filter option above or by an explicit use of NOW() or TODAY() in a filter formula

– the query cache is not as efficient for queries that use them. Tableau flags these as "transient

queries" in the cache server and their results are not kept as long as other query results.

Filter cards
Showing too many filter cards will slow you down, particularly if you set them to use ‘Only Relevant

Values’ and you’ve got lots of discrete lists. Try a more guided analytics approach and use action

filters within a dashboard instead. If you’re building a view with lots of filters in it to make it highly

interactive, ask yourself whether multiple dashboards with different levels and themes would work

better (hint: yes, it probably would).

Enumerated vs. non-enumerated

Enumerated filter cards require Tableau to query the data source for field values before the filter

card can be rendered. These include:

 Multiple value list – all dimension members

 Single value list – all dimension members

 Compact List – all dimension members

 Slider – all dimension members

 Measure filters – MIN and MAX values

 Ranged date filters – MIN and MAX values

39

Non-enumerated filter cards on the other hand, do not require knowledge of the potential field

values. These include:

 Custom value list

 Wildcard match

 Relative date filters

 Browse period date filters.

Consequently, non-enumerated filter cards reduce the number of filter related queries that need to

be executed by the data source. Also non-enumerated filter cards render faster when there are

many dimension members to display.

Using non-enumerated filter cards can improve performance however it does so at the expense of

visual context for the end user.

Relevant values

Enumerated filter cards can be set to show the potential field values in three different ways:

 All Values in Database - when you select this option all values in the database are shown

regardless of the other filters on the view. The filter does not need to re-query the database

when other filters are changed.

 All Values in Context – this option is only available when you have active context filters. The

filter card will show all values in the context regardless of other filters on the view. The filter

does not need to re-query the database when dimension or measure filters are changed

however it does need to re-query if the context changes.

 Only Relevant Values - when you select this option other filters are considered and only

values that pass these filters are shown. For example, a filter on State will only show the

Eastern states when a filter on Region is set. Consequently, the filter must re-query the data

source when other filters are changed.

As you can see, the “only relevant values” setting can be very useful for helping the user make

relevant selections, but it can significantly increase the number of queries that need to be run while

they interact with the dashboard. It should be used in moderation.

Filter card alternatives
There are alternatives to using filter cards that provide a similar analytic outcome but do so without

the additional query overhead. For example, you could create a parameter and filter based on the

users’ selections.

 PROS:

 Parameters do not require a data source query before rendering

 Parameters + calculated fields can implement logic that is more complex than can be done

with a simple field filter

 Parameters can be used to filter across data sources – for versions prior to Tableau 10,

filters operate only within a single data source. In Tableau 10 and later, filters can be set

to work across related data sources

40

 CONS:

 Parameters are single-value only – you cannot use them if you want the user to select

multiple values

 Parameters are not dynamic – the list of values is defined when they are created and does

not update based on the values in the DBMS

Another alternative is to use filter actions between views -

 PROS:

 Actions support multi-value selection – either by visually lassoing or CTRL/SHIFT clicking

 Actions show a dynamic list of values that is evaluated at run time

 Actions can be used to filter across data sources – for versions prior to Tableau 10, filters

operate only within a single data source. In Tableau 10 and later, filters can be set to work

across related data sources

 CONS:

 Filter actions are more complex to set up than filter cards

 Actions do not present the same user interface as parameters or filter cards – generally

they require more screen real estate to display

 The action source sheet still needs to query the data source; however, it benefits from

caching within the Tableau processing pipeline

For a further discussion on alternate design techniques that don’t rely heavily on filter cards, see the

earlier section on good dashboard design.

User filters
When a workbook contains user filters – either through the “Create User Filter…” dialog or through

calculated fields that use any of the built-in User functions like ISMEMBEROF() – the model cache is

not shared across user sessions. This can result in a much lower rate of cache reuse, which in turn

can mean more work for the Tableau Server. Use these filter types with consideration.

Zooming vs. filtering
When you zoom in on a viz with a large number of marks, we do not filter out the marks you can’t

see. All we are changing is the viewport over the data. The total number of marks being manipulated

is not changing as you can see in the following image:

41

If you only need a subset of the data, filter out the unwanted data and let the auto-zoom feature of

Tableau set the viewport.

42

Is it my calculations?
In many cases your source data will not provide all fields you need to answer all of your questions.

Calculated fields will help you to create all the dimensions and measures needed for your analysis.

Within a calculated field you may define a hardcoded constant (like a tax rate, for instance), do very

simple mathematical operations like subtraction or multiplication (e.g. revenues minus cost), use

more complex mathematical formulas, perform logical tests (e.g. IF/THEN, CASE), do type

conversions and much more.

Once defined, a calculated field is available across the entire workbook as long as the worksheets are

using the same data source. You can use calculated fields in your workbook in the same way you use

dimensions and measures from your source data.

There are four different calculation types in Tableau:

 row-level calculations,

 aggregate calculations,

 table calculations, and

 Level of Detail expressions.

Use the following flowchart as a guide for how to select the best approach:

A great reference for how to perform complex calculations and a forum where users share solutions

to common problems is the Tableau Calculation Reference Library:

http://tabsoft.co/1I0SsWz

http://tabsoft.co/1I0SsWz

43

Calculation types

Row-level and aggregate calculations
Row-level and aggregate calculations are expressed as part of the query sent to the data source and

therefore are calculated by the database. For example, a viz showing the sum total of sales for each

year of order data would send the following query to the data source:

SELECT DATEPART(year,[OrdersFact].[Order Date]) AS [yr:Order Date:ok],

 SUM([OrdersFact].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[OrdersFact] [OrdersFact]

GROUP BY DATEPART(year,[OrdersFact].[Order Date])

The YEAR calculation is a row-level calculation and the SUM(SALES) is an aggregate calculation.

In general, row-level and aggregate calculations scale very well and there are many database tuning

techniques that can be employed to improve their performance.

Note that in Tableau, the actual DB query may not be a direct translation of the basic calculations

used in the viz. For example, the following query is run when the viz contains a calculated field Profit

Ratio defined as SUM([Profit])/SUM([Sales]):

SELECT DATEPART(year,[OrdersFact].[Order Date]) AS [yr:Order Date:ok],

 SUM([OrdersFact].[Profit]) AS

[TEMP(Calculation_0260604221950559)(1796823176)(0)],

 SUM([OrdersFact].[Sales]) AS

[TEMP(Calculation_0260604221950559)(3018240649)(0)]

FROM [dbo].[OrdersFact] [OrdersFact]

GROUP BY DATEPART(year,[OrdersFact].[Order Date])

Tableau actually fetches the elements of the calculation and performs the division function in the

client layer. This ensures that SUM([Profit]) and SUM([Sales]) at the Year level are cached and

can be used elsewhere within the workbook without having to go to the data source.

Finally, query fusion (combining multiple logical queries into a single actual query) can modify the

query run against the data source. It can result in multiple measures from multiple worksheets being

combined into a single query if those other worksheets share the same granularity.

Using ATTR()

ATTR()is a powerful function, often used as an aggregation for categorical dimensions. In simple

terms, it returns a value if it is unique, else it returns *. Technically, the function performs the

following logical test:

IF MIN([dimension]) = MAX([dimension])

 THEN [dimension]

 ELSE “*”

END

This requires two aggregations to be performed in the underlying data source – MIN() and MAX() –

and both results to be passed back in the result set. If you are not concerned with the possibility of

having multiple dimension values, a more efficient solution is to just use one aggregation – either

MIN() or MAX(). It doesn’t matter which you use, but pick one and stick to it to maximise your

chances of a cache hit.

To show how ATTR() impacts the data source, we created the following viz:

44

By default, placing a dimension on the tooltip shelf uses ATTR() as the default aggregation. This

causes the following query:

SELECT [Superstore APAC].[Order ID] AS [Order ID],

 MAX([Superstore APAC].[Customer Name]) AS [TEMP(attr:Customer

Name:nk)(2542222306)(0)],

 MIN([Superstore APAC].[Customer Name]) AS [TEMP(attr:Customer

Name:nk)(3251312272)(0)],

 SUM([Superstore APAC].[Profit]) AS [sum:Profit:ok],

 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[Superstore APAC] [Superstore APAC]

GROUP BY [Superstore APAC].[Order ID]

If we know there aren’t multiple customers for each order ID, we can change the aggregation to

MIN() and make the query simpler:

SELECT [Superstore APAC].[Order ID] AS [Order ID],

 MIN([Superstore APAC].[Customer Name]) AS [min:Customer Name:nk],

 SUM([Superstore APAC].[Profit]) AS [sum:Profit:ok],

 SUM([Superstore APAC].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[Superstore APAC] [Superstore APAC]

GROUP BY [Superstore APAC].[Order ID]

The following table shows the different in performance for the two options (results are seconds for

the query to complete, sourced from the log file):

45

You can read more information on ATTR() in the following blog post from InterWorks:

 http://bit.ly/1YEuZhX

Level of detail calculations
Level of detail (LOD) expressions allow you to define the level of detail at which a calculation should

be performed, independently of the viz LOD.

LOD expressions can (in some cases) allow you to replace calculations you may have authored in

more cumbersome ways in earlier versions of Tableau:

 Using table calcs, you may have tried to find the first or last period within a partition. For

example, calculating the headcount of an organization on the first day of every month.

 Using table calcs, calculated fields, and reference lines, you may have tried to bin aggregate

fields. For example, finding the average of a distinct count of customers.

 Using data blending, you may have tried to achieve relative date filtering relative to the

maximum date in the data. For example, if your data is refreshed on a weekly basis,

computing the year to date totals according to the maximum date.

Unlike table calcs, LOD Expressions are generated as part of the query to the underlying data source.

They are expressed as a nested select so they are dependent on DBMS performance:

Test # ATTR MIN DIM

1 2.824 1.857 1.994

2 2.62 2.09 1.908

3 2.737 2.878 2.185

4 2.804 1.977 1.887

5 2.994 1.882 1.883

Average 2.7958 2.1368 1.9714

% improvement 24% 29%

Less

More

More

Less

Viz Level of Detail

Totally Aggregated

Totally Disaggregated
(granularity of data source -

cannot go lower)

G
ran

u
larity

A
ggre

gatio
n

#

#

#

#

#

#

#

A
g

g
reg

a
te

http://bit.ly/1YEuZhX

46

SELECT T1.[State],SUM(T2.[Sales per County, State])

FROM [DB Table] T1 INNER JOIN

 (SELECT [State], [County], AVG([Sales]) AS [Sales per County, State]

 FROM [DB Table] GROUP BY [State],[County]) T2

ON T1.[State] = T2.[State]

GROUP BY T1.[State]

This means that there could be scenarios where it is more efficient to solve a problem using one

approach or the other – i.e. a table calc or blending could perform better than a LOD expression, or

vice versa. If you suspect performance is slow due to a LOD expression you might try replacing it

with a table calc or a data blend (if possible) to see if performance improves. Also, LOD expressions

can be heavily impacted by join culling so we suggest you go back and re-read that section if you find

your queries are running slowly when LOD expressions are used.

To better understand the mechanics of LOD expressions, read the “Understanding Level of Detail

Expressions” whitepaper:

 http://tabsoft.co/1MphVai

You can also read the “Top 15 LOD Expressions” blog post from Bethany Lyons that provides a

examples for a number of common problem types:

 http://tabsoft.co/1Mpi7Gq

Finally, there are a lot of blog posts from the community on the topic that are extremely helpful. A

great curated list is available at data + science:

 http://bit.ly/1MpkFV5

Table calculations
Table calculations – unlike row-level and aggregate calculations – are not executed by the database

but rather calculated by Tableau on the query result set. While this means more work for Tableau, it

is generally done over a much smaller set of records than are in the original data source.

If table calculation performance is a problem (possibly because the result set being returned to

Tableau is very large) consider pushing some aspects of the calculation back to the data source layer.

One way to do this is via a level of detail expression. Another would be to leverage an aggregated

data extract. Imagine an example where you want to find the weekly average of daily total sales

across multiple stores. You can do this with a table calculation using:

WINDOW_AVG(SUM([Sales])

However, if the number of days/stores is very large, this calculation can become slow. To push the

SUM([Sales]) back to the data layer, create an aggregate extract that rolls the Date dimension up to

the day level. The calculation can then be done by simply AVG([Sales]) as the extract has already

materialised the daily totals.

In some use cases, we might know that the value of the aggregate factor is not changing over the

partition. When this happens, use MIN() or MAX() as the aggregation function instead of AVG() or

ATTR() as they are faster to evaluate. And once you have picked one – stick to it to it to improve your

chances of a cache hit!

External calculations
Tableau has mechanisms where complex logic can be passed to an external engine for calculation.

These include making calls to R (via a Rserve connection) or Python (via a Dato server connection).

http://tabsoft.co/1MphVai
http://tabsoft.co/1Mpi7Gq
http://bit.ly/1MpkFV5

47

Within Tableau, these operations are similar to table calculations so they are calculated across

partitions. This means they may be called multiple times for a single viz which can have performance

overhead. They are also not optimised or coalesced in any way so consider whether you can obtain

multiple return values in a single function call (e.g. in a concatenated string) instead of making

multiple function calls. Finally, the time taken to transfer data to/from the external computation

engine can also be an overhead.

Analytics
The analytics pane provides quick access to a number of advanced analyses such as:

 Totals

 Reference lines

 Trend lines

 Forecasts

 Clustering (new in Tableau 10)

These analytics do not generally require additional queries to run – they perform more like table

calculations over the data in the query result cache. Like table calculations, if you have a very large

set of data in the query results then the computation process can take some time, but in general

these are not going to be a big contributor to overall poor workbook performance.

Another contributor to performance for totals and reference lines is whether the measure

aggregations are additive or non-additive. For additive aggregations (e.g. SUM, MIN, MAX) then

calculating totals or reference lines can be done locally in Tableau. For non-additive aggregations

(e.g. COUNTD, TOTAL, MEDIAN, PERCENTILE) we need to go back to the data source to calculate the

total/reference line values.

Calculations vs. native features
Sometimes, users create calculated fields to perform functions when these can easily be achieved

with native features of Tableau. For example:

 Grouping dimension members together – consider using groups or sets;

 Grouping measure values together into ranged bands – consider using bins;

 Truncating dates to a coarser granularity e.g. month or week – consider using custom date

fields;

 Creating a set of values that is the concatenation of two different dimensions – consider

using combined fields;

 Displaying dates with a specific format, or converting numeric values to KPI indicators –

consider using built-in formatting features;

 Changing the displayed values for dimension members – consider using aliases.

This is not always possible (for example, you might require variable width bins which is not possible

using basic bins) but consider using the native features wherever possible. Doing so is often more

efficient than a manual calculation, and as our developers continue to improve the performance of

Tableau you will benefit from their efforts.

Impact of data types
When creating calculated fields, it is important to understand that the data type used has a

significant impact on the calculation speed. As a general guideline

http://onlinehelp.tableausoftware.com/current/pro/online/en-us/sortgroup_groups.html
http://onlinehelp.tableausoftware.com/current/pro/online/en-us/sortgroup_groups.html
http://onlinehelp.tableau.com/current/pro/online/en-us/sortgroup_sets.html
http://onlinehelp.tableausoftware.com/current/pro/online/en-us/calculations_bins.html
http://onlinehelp.tableausoftware.com/current/pro/online/en-us/calculations_bins.html
http://onlinehelp.tableau.com/current/pro/online/en-us/dates_custom.html
http://onlinehelp.tableau.com/current/pro/online/en-us/dates_custom.html
http://onlinehelp.tableau.com/current/pro/online/en-us/datafields_dwfeatures_combine.html
http://onlinehelp.tableausoftware.com/current/pro/online/en-us/datafields_fieldproperties_aliases.html
http://onlinehelp.tableausoftware.com/current/pro/online/en-us/datafields_fieldproperties_aliases.html

48

 Integers and Booleans are much faster than strings and dates

String and date calculations are very slow – often there are 10-100 base instructions that need to be

executed for each calculation. In comparison, numeric and Boolean calculations are very efficient.

These statements are not just true for Tableau’s calculation engine but also for most databases.

Because row-level and aggregate calculations are pushed down to the database, if these are

expressed as numeric vs. string logic, they will execute much faster.

Performance techniques
Consider the following techniques to ensure your calculations are as efficient as possible:

Use Booleans for basic logic calculations
If you have a calculation that produces a binary result (e.g. yes/no, pass/fail, over/under) be sure to

return a Boolean result rather than a string. As an example:

IF [Date] = TODAY() THEN “Today”

 ELSE “Not Today”

END

This will be slow because it is using strings. A faster way to do this would be to return a Boolean:

[Date] = TODAY()

Then use aliases to rename the TRUE and FALSE results to “Today” and “Not Today”.

String Searches
Imagine you want to be able to show all records where the product name contains some lookup

string. You could use a parameter to get the lookup string from the user and then create the

following calculated field:

IF FIND([Product Name],[Product Lookup]) > 0

 THEN [Product Name]

 ELSE NULL

END

This calculation is slow as this is an inefficient way to test for containment. A better way to do this

would be to use the specific CONTAINS function as this will be converted into optimal SQL when

passed to the database:

CONTAINS([Product Name],[Product Lookup])

However, in this case, the best solution would be to not use a calculated field at all, but rather use a

wild card match filter card.

Parameters for conditional calculations
A common technique in Tableau is to provide the end user with a parameter so they can select a

value that will determine how a calculation is performed. As an example, imagine you want to let the

end user control the level of date aggregation shown on a view by selecting from a list of possible

values. Many people would create a string parameter:

Value

Year

Quarter

Month

Week

Day

49

Then use it in a calculation like this:

CASE [Parameters].[Date Part Picker]

 WHEN “Year” THEN DATEPART('year',[Order Date])

 WHEN “Quarter THEN DATEPART('quarter',[Order Date])

..

END

A better way would be to use the built-in DATEPART() function and create the calculation as follows:

DATEPART(LOWER([Parameters].[Date Part Picker]), [Order Date]))

In older versions of Tableau, the latter approach was much faster. However there is no longer a

performance difference between these two solutions as we collapse the conditional logic of the

CASE statement based on the parameter value and just pass the appropriate DATEPART() to the data

source.

Don’t forget that you also need to think about the future maintainability of the solution, in which

case the latter calculation would probably be a better option.

Date conversion
Users often have date data that is not stored in native date formats – e.g. it could be a string or a

numeric timestamp. The function DateParse() makes it easy to do these conversions. You can simply

pass in a formatting string:

DATEPARSE(“yyyyMMdd”, [YYYYMMDD])

Note that DATEPARSE() is only supported on a subset of data sources:

 non-legacy Excel and text file connections

 MySQL

 Oracle

 PostgreSQL

 Tableau Data Extract

If DATEPARSE() is not supported for your data source an alternate technique to convert this to a

proper Tableau date is to parse the field into a date string (e.g. “2012-01-01” – note that ISO strings

are preferred as they stand up to internationalisation) and then pass it into the DATE() function.

If the originating data is a numeric field, converting to a string, then to a date is very inefficient. It is

much better to keep the data as numeric and use DATEADD() and date literal values to perform the

calculation.

For example, a slow calculation might be (converting an ISO format number field):

DATE(LEFT(STR([YYYYMMDD]),4)

 + “-“ + MID(STR([YYYYMMDD]),4,2)

 + “-“ + RIGHT(STR([YYYYMMDD]),2))

A more efficient way to do this calculation is:

DATEADD('day', INT([yyyymmdd])% 100 - 1,

 DATEADD('month', INT([yyyymmdd]) % 10000 / 100 - 1,

 DATEADD('year', INT([yyyymmdd]) / 10000 - 1900,

 #1900-01-01#)))

50

An even better way would be to use the MAKEDATE() function if it is supported on your data source:

MAKEDATE(2004, 4, 15)

Note that the performance gains can be remarkable with large data sets. Over a 1 billion record

sample, the first calculation took over 4 hours to complete, while the second took about a minute.

Logic statements

Test for the most frequent outcome first

When Tableau evaluates a logical test, it stops working through the possible outcomes once it finds a

match. This means you should test for the most likely outcome first so that for the majority of the

cases being evaluated, they stop after the first test.

Consider the following example. This logic:

IF <unlikely_test>

 THEN <unlikely_outcome>

 ELSEIF <likely_test>

 THEN <likely_outcome>

END

Will be slower to evaluate than this:

IF <likely_test>

 THEN <likely_outcome>

 ELSEIF <unlikely_test>

 THEN <unlikely_outcome>

END

ELSEIF > ELSE IF

When working with complex logic statements remember that ELSEIF > ELSE IF. This is because a

nested IF computes a nested CASE statement in the resulting query rather than being computed as

part of the first. So this calculated field:

IF [Region] = "East" AND [Segment] = "Consumer"

 THEN "East-Consumer"

 ELSE IF [Region] = "East" and [Segment] <> "Consumer"

 THEN "East-All Others"

 END

END

Produces the following SQL code with two nested CASE statements and 4 conditional tests:

(CASE

 WHEN (([Global Superstore].[Region] = 'East')

 AND ([Global Superstore].[Segment] = 'Consumer'))

 THEN 'East-Consumer'

 ELSE (CASE

 WHEN (([Global Superstore].[Region] = 'East')

 AND ([Global Superstore].[Segment] <> 'Consumer'))

 THEN 'East-All Others'

 ELSE CAST(NULL AS NVARCHAR)

 END)

END)

This would run faster as rewritten below with the ELSEIF instead of the nested IF and more efficient

use of conditional tests:

IF [Region] = "East" AND [Segment] = "Consumer"

51

 THEN "East-Consumer"

 ELSEIF [Region] = "East”

 THEN "East-All Others"

END

This results in only a single CASE statement in the SQL code:

(CASE

 WHEN (([Global Superstore].[Region] = 'East')

 AND ([Global Superstore].[Segment] = 'Consumer'))

 THEN 'East-Consumer'

 WHEN ([Global Superstore].[Region] = 'East')

 THEN 'East-All Others'

 ELSE CAST(NULL AS NVARCHAR)

END)

However, this is faster still. While it does use a nested IF statement, it is the most efficient use of the

conditional tests:

IF [Region] = "East" THEN

 IF [Segment] = "Consumer"

 THEN "East-Consumer"

 ELSE "East-All Others"

 END

END

The resulting SQL code:

(CASE

 WHEN ([Global Superstore].[Region] = 'East')

 THEN (CASE

 WHEN ([Global Superstore].[Segment] = 'Consumer')

 THEN 'East-Consumer'

 ELSE 'East-All Others'

 END)

 ELSE CAST(NULL AS NVARCHAR)

END)

Avoid redundant logic checks

Similarly, avoid redundant logic checks. The following calculation:

IF [Sales] < 10 THEN "Bad"

 ELSEIF[Sales]>= 10 AND [Sales] < 30 THEN "OK"

 ELSEIF[Sales] >= 30 THEN "Great"

END

Generates the following SQL:

(CASE

 WHEN ([Global Superstore].[Sales] < 10)

 THEN 'Bad'

 WHEN (([Global Superstore].[Sales] >= 10)

 AND ([Global Superstore].[Sales] < 30))

 THEN 'OK'

 WHEN ([Global Superstore].[Sales] >= 30)

 THEN 'Great'

 ELSE CAST(NULL AS NVARCHAR)

END)

This would be more efficiently written as:

IF [Sales] < 10 THEN "Bad"

52

 ELSEIF[Sales] >= 30 THEN "Great"

 ELSE "OK"

END

Producing the following SQL:

(CASE

 WHEN ([Global Superstore].[Sales] < 10)

 THEN 'Bad'

 WHEN ([Global Superstore].[Sales] >= 30)

 THEN 'Great'

 ELSE 'OK'

END)

Many little things
There are lots of little things you can do that can have impact of performance. Consider the

following tips:

 Dealing with date logic can be complicated. Rather than writing elaborate tests using

multiple date functions – e.g. MONTH() and YEAR() – consider using some of the other built-

in functions such as DATETRUNC(), DATEADD() and DATEDIFF(). These can significantly

reduce the complexity of the query generated to the data source.

 Distinct counting values is one of the slowest aggregation types in almost all data sources.

Use the COUNTD aggregation sparingly.

 Using parameters with a wide scope of impact (e.g. in a custom SQL statement) can affect

cache performance.

 Filtering on complex calculations can potentially cause indexes to be missed in the

underlying data source.

 Use NOW() only if you need the time stamp level of detail. Use TODAY() for date level

calculations.

 Remember that all basic calculations are passed through to the underlying data source –

even literal calculations like label strings. If you need to create labels (e.g. for columns

headers) and your data source is very large, create a simple text/Excel file data source with

just one record to hold these so they don't add overhead on the big data source. This is

especially important if your data source uses stored procedures – see this section for more

details.

53

Is it my queries?
One of the very powerful features of Tableau is that it can use both in-memory data (i.e. extracted

data connections) as well as in-situ data (i.e. live data connections). Live connections are a very

powerful feature of Tableau as they allow us to take advantage of the processing power already in

place in the data source. However, because we are now dependent on the source data platform for

performance it becomes critical that we generate our queries to the data source as efficiently and

optimally as possible.

As we have already discussed, the more complex the question, the more data you display, the more

elements you include on the dashboard – these all mean more work for the data source. To make

our workbooks as efficient as possible, we want to minimise the number of queries, ensure the

queries are evaluated as efficiently as possible, minimise the amount of data returned by the

queries, and reuse data as much as possible between requests.

Automatic optimisations
While there are many things we can deliberately do to improve the performance of our queries,

there are many optimisations that Tableau will perform automatically to ensure your workbooks

execute efficiently. Most of these are things you can’t directly control and in most cases shouldn’t

need to think about, but if you understand them well you can take advantage of them to improve

performance.

Parallel execution – running multiple queries at once
Tableau takes advantage of the source databases’ ability to execute multiple queries at the same

time. Consider the following dashboard:

Opening this workbook in Tableau shows the following queries:

54

As you can see, run serially the queries would take 2.66 secs. But by running them in parallel we only

take the length of the longest query (1.33 secs).

The level of query parallelism varies between source systems as some platforms handle

simultaneous queries better than others. The default is to run a maximum of 16 parallel queries for

all data sources apart from text, Excel and statistics files (limit is 1 query at a time). Other data

sources might have limits set below the default – see the following link for details:

 http://tabsoft.co/1TjZvxo

In most cases changing these settings is not necessary and you should leave them at their default

settings, however if you have a specific need to control the degree of parallelism this can be set as:

 a global limit on the number of parallel queries for Tableau Server;

 limits for a particular data source type, such as SQL Server;

 limits for a particular data source type on a specific server; or

 limits for a particular data source type, on a specific server, when connecting to a specific

database.

These settings are managed by an xml file named connection-configs.xml which you create and save

in the app folder on Windows (C:\Program Files\Tableau\Tableau 10.0) and Mac (right click the

App, click Show Package Contents, and place the file here) for Tableau Desktop or in the config

directory in the vizqlserver folder (for example:

C:\ProgramData\Tableau\TableauServer\data\tabsvc\config\vizqlserver) for Tableau

Server. You must copy this configuration file to all the vizqlserver configuration directories in all

worker machines.

You can read more about configuring parallel queries, including the syntax of the connection-

configs.xml file, here:

 http://tabsoft.co/1HAlztD

Query elimination – running less queries
You can also see in the example above that we only executed two queries instead of three. By

batching the queries together, Tableau can eliminate redundant queries. Tableau’s query optimiser

will sort the queries to run the most complex queries first in the hope that subsequent queries can

be serviced from the result cache. In the example, because the timeline includes Product Category

and because the SUM aggregation of Sales Amount is fully additive, the data for the Category chart

can be resolved from the query cache of the Timeline worksheet and doesn’t require a hit on the

data source.

The query optimiser will also look for queries that are at the same level of detail (i.e. they are

specified by the same set of dimensions) and will collapse them into a single query that returns all

requested measures. Consider the following dashboard:

http://tabsoft.co/1TjZvxo
http://tabsoft.co/1HAlztD

55

As you can see, this dashboard contains four sheets – each showing a different measure over time.

They all have the same level of detail as they are showing the data using a continuous month.

Instead of running four separate requests of the database, Tableau combines these together into a

single query:

The query is as follows:

SELECT AVG(cast([Global Superstore].[Discount] as float)) AS

[avg:Discount:ok],

 AVG(cast([Global Superstore].[Sales] as float)) AS [avg:Sales:ok],

 SUM(CAST(1 as BIGINT)) AS [sum:Number of Records:ok],

 SUM([Global Superstore].[Sales]) AS [sum:Sales:ok],

 DATEADD(month, DATEDIFF(month, CAST('0001-01-01 00:00:00' AS datetime2),

[Global Superstore].[Order Date]), CAST('0001-01-01 00:00:00' AS datetime2))

AS [tmn:Order Date:ok]

FROM [dbo].[Global Superstore] [Global Superstore]

GROUP BY DATEADD(month, DATEDIFF(month, CAST('0001-01-01 00:00:00' AS

datetime2), [Global Superstore].[Order Date]), CAST('0001-01-01 00:00:00' AS

datetime2))

As you can see, this optimisation (called “query fusion”) can improve the overall performance

significantly. Where possible, consider setting the same level of detail for multiple sheets on a

dashboard.

Note that query fusion does not happen for queries against TDE data sources.

56

Caching – not running queries at all
What is better than running fewer queries? Running no queries at all! Tableau has extensive caching

in both Tableau Desktop and Tableau Server which can significantly reduce the number of queries

that need to be run on the underlying data source.

Tableau Server

Caching in Tableau Server has multiple layers:

The first layer of caching depends on whether the session is using client-side or server-side

rendering. See this earlier section for more information on the two rendering models and how

Tableau determines which it should use.

If the session is using client-side rendering, the first thing the browser needs to do is load the viewer

client. This involves loading a set of JavaScript libraries and the data so it can render the initial view –

a process called “bootstrapping” which can take several seconds. Knowing that dashboards are likely

to be viewed by multiple users and in order to reduce the wait time for subsequent view requests,

the bootstrap responses are cached. Each session first checks the bootstrap cache to see if there is a

response already created that it can use. If it finds one, the browser simply loads the response from

the cache, making it very quick to render the initial view. Once the viewer client is loaded in the

client browser, some interactions can be fulfilled entirely with the local data (e.g. highlighting,

tooltips) resulting in a fast, smooth user experience.

If the dashboard is being displayed via server-side rendering, the server renders the dashboard

elements as a series of image files (called “tiles”). These tiles are passed to the browser where they

are assembled to display the viz. As above, we expect that dashboards will be viewed by multiple

users, so the server caches these images on disk. Each request checks the tile cache to see if the

image has already been rendered, and if it finds one it simply loads the file from cache. A hit on the

tile cache makes the response time faster and reduces the workload on the server. One simple way

to increase the effectiveness of the tile cache is to set your dashboards to have a fixed size.

Overall, client-side rendering produces smoother, more responsive user interactions and places less

workload on the Tableau Server. Where possible, you should design your workbooks so they can be

rendered client-side.

57

The next layer of caching is called the visual model. A visual model describes how to render an

individual worksheet so viewing a dashboard can reference multiple visual models – one for each

worksheet used. It includes the results from local calculations (e.g. table calcs, reference lines,

forecasts, clustering, etc.) and the visual layout (how many rows/columns to display for small

multiples and crosstabs; the number and interval of axis ticks/grid lines to draw; the number and

location of mark labels to be shown; etc.).

Visual models are created and cached in-memory by the VizQL Server and it does its best to share

results across user sessions where possible. The key factors in whether a visual model can be shared

are:

 The size of the viz display area – models can only be shared across sessions where the size

of the viz is the same. Setting your dashboards to have a fixed size will benefit the model

cache in much the same way as it benefits the tile cache – allowing greater reuse and

lowering the workload on the server.

 Whether the selections/filters match – if the user is changing filters, parameters, doing drill-

down/up, etc. the model is only shared with sessions that have a matching view state. Try

not to publish workbooks with “show selections” checked as this can reduce the likelihood

that different sessions will match.

 The credentials used to connect to the data source – if users are prompted for credentials

to connect to the data source then the model can only be shared across user sessions with

the same credentials. Use this capability with caution as it can reduce the effectiveness of

the model cache.

 Whether user filtering is used – if the workbook contains user filters or has calculations

containing functions such as USERNAME() or ISMEMBEROF(), then the model is not shared

with any other user sessions. Use these functions with caution as they can significantly

reduce the effectiveness of the model cache.

The final layer of caching is the query cache. It stores results from queries that have been run in

anticipation that we can use them to service future queries. Hitting this cache is very effective as it

allows us to avoid repeatedly running queries in the data source – we just load the data from the

cache. It also allows us, in some circumstances, to service queries using the result of another query.

We discussed the benefits of this earlier when talking about query elimination and query fusion.

There are two parts to this cache – one is held within the VizQL process (called the “in-proc cache”)

and the other is shared across multiple processes via the Cache Server (called the “external cache”).

If a query is sent to a VizQL instance that has run the same query previously, the request is serviced

from the in-proc cache. Note that this cache is local to each VizQL process and is maintained in-

memory.

In addition to these in-proc caches there is an external cache that is shared – not just across VizQL

instances but across ALL processes that access the underlying data source (e.g. backgrounders, data

servers, etc.). A service called the Cache Server manages the external cache across the whole cluster.

Note that not all queries are written to the external cache. If a query runs very quickly, it can be

faster to run it again rather than check the cache, so there is a minimum query time threshold. Also,

if the result of a query is very large, it might not be efficient to write it to the Cache Server, so there

is a maximum size threshold as well.

The external cache significantly increases the effectiveness of caching in deployments where there

are multiple VizQL instances. In contrast to the in-proc caches which are volatile, the external cache

58

is persistent (the Cache Server writes the data to disk) and remains between instantiations of the

services.

To maximise the effectiveness of the caches, you can adjust the settings of the Tableau Server

installation to retain them for as long as possible:

If you have the server capacity available, you can increase the size of the caches. There is no penalty

to increasing these settings, so if you have sufficient RAM you can increase the numbers significantly

to avoid content being pushed from the cache. You can monitor the effectiveness of the caches via

the log files, or via TabMon.

 Model cache – the default setting is to cache 60 models per VizQL instance. You can adjust

this setting through the tabadmin command – if you have the RAM available you could

increase this to match the number of views published on your server:

o tabadmin set vizqlserver.modelcachesize 200

 In-proc cache – the default setting is to cache 512MB of query results per VizQL instance.

This might not sound like much, but remember we are caching the query results which are

from aggregate queries. You can adjust this setting through the tabadmin command:

o tabadmin set vizqlserver.querycachesize 1024

You can also increase the capacity and throughput of the external query cache by adding more

instances of the Cache Server. Best practice is to run one instance of the Cache Server for every

VizQL Server instance.

 External cache – the default setting is to cache 512MB of query results for each instance of

the Cache Server.

Finally, a useful side-effect of the cache being shared is we can warm the cache for workbooks that

we know are slow on first view by running a subscription for the workbook. Doing this early in the

morning before your interactive users arrive at work will ensure that the workbook is run and the

query results loaded into the cache. Assuming the results are not pushed from cache or expired in

the intervening time, the cache will then be hit when the users view the workbook, making the initial

view time fast.

59

Tableau Desktop

Caching in Tableau Desktop is much simpler than Tableau Server because it is a single user

application and we don’t need to manage multiple sessions. Only the query cache is present in

Tableau Desktop:

Like Tableau Server, there is an in-proc and an external cache. The in-proc, volatile, memory-based

cache is used for connections to all data sources, however the external cache is only used for file-

based data source (e.g. data extracts, Excel, Access, text files, statistical files, etc.). Like in Tableau

Server, the external cache is persistent. That means the cache results are retained between sessions

in Tableau Desktop so if you use a file data source, restart Tableau Desktop and use it again you will

still benefit from the cache.

The external cache is stored in %LOCALAPPDATA%\Tableau\Caching on Windows and

~/Library/Caches/com.tableau/ on Mac. By default, it is limited to ~750MB in total, and it will be

invalidated if the user forces a refresh of the data source (e.g. pressing F5, ⌘R).

Finally, in Tableau Desktop the external query cache data is included when the file is saved as a

packaged workbook. This allows Tableau Desktop and Tableau Reader to rapidly render the initial

view of the workbook while it continues to unpack the larger data source file in the background. For

an end user, this can dramatically improve the responsiveness of opening the workbook. Note that

the cache data is only included if the data is <= 10% the size of the source data file, and queries that

use relative date filters are not included.

Lazy connections
Prior to Tableau 10, when a user opened a workbook with multiple data sources we would initially

connect to all non-credentialed data sources (i.e. data sources that don’t require the user to enter a

username/password). This meant we could potentially be spending time connecting to data sources

that weren’t being used on the sheet/dashboard/story the user was viewing.

In Tableau 10 we now only connect to a data source when a user needs it to view a selected

sheet/dashboard/story. This change will reduce the time to load a workbook with a tabbed view (on

Tableau Desktop) so users can start exploring their data sooner.

Joins
Generally, if you are working with multiple tables in Tableau the preferred approach is to define the

joins in the data connection window. When you do this you are not defining a specific query – you

are simply defining how the tables relate to one another. When you drag and drop fields into a viz

Tableau will use this information to generate the specific query necessary to fetch only the required

data.

As a general performance rule-of-thumb, the number of joined tables should be minimized to only

include the tables needed for a specific worksheet/visualization. Depending on the complexity of the

60

data connection and the worksheets, it may also be worth separating out data connections for each

worksheet and creating specific join patterns for those sheets.

Joins perform better when joins are properly constrained between tables. The constraints give

Tableau Desktop the freedom to simplify queries down to just the tables necessary to answer certain

subsets of a question (legends, filter cards).

Blending
When deciding between joining data tables and blending data tables in Tableau, consider where the

data is coming from, the number of data connections, and the number of records you have in the

data.

When you use blending, one of the primary influences on blending performance is not the number

of records in each data source but rather the cardinality of the blending field(s) that are linking the

two data sets. Blending queries the data from both data sources at the level of the linking fields and

then merges the results of both queries together in Tableau’s local memory.

If there are many unique values then this can require a large amount memory. It is recommended

that you use the 64-bit version of Tableau Desktop when blending on data to avoid running out of

memory. However, blends of this nature are still likely to take a long time to compute.

The best practice recommendation for blending is to avoid blending on dimensions with large

numbers of unique values (e.g. Order ID, Customer ID, exact date/time, etc).

Primary groups and aliases
If you find it necessary to blend between two data sources because one contains the “fact” records

and the other contains dimensional attributes it might be possible to improve performance by

creating a primary group or alias.

They work by creating groups and/or aliases in the primary data source to reflect the attributes

listed in the secondary data source. Primary groups are used for 1:many relationships and primary

aliases are used for 1:1 relationships. You can then use the relevant object from the primary data

source, removing the need for blending at view time.

For the following examples, consider the following three tables:

Query
Results

Primary Data Source Secondary Data Source

Linking Column(s)

Left Outer Join

Dimensions
Attributes

Measures

Attributes
Measures

Cloud Big Data OLAPFilesDBMS Cloud Big Data FilesDBMS

Query
Results

Blended
Results

61

Primary groups are useful when the secondary data source contains an attribute that is mapped

1:many back to dimension members in the primary data source. Assume what we want to produce

from the above data is this:

We could create this by blending but as already discussed this would result in very slow performance

if there were a large number of IDs:

By right-clicking on the Group field and selecting “Create Primary Group” Tableau will create a group

object in the primary data source that maps the linking field (in this case ID) to the selected

secondary data source dimension (in this case Group).

62

We can now recreate this table without requiring a blend:

Primary aliases are useful when the secondary data source contains an attribute that is mapped 1:1

back to dimension members in the primary data source. Assume what we want to produce from the

above data is this:

We could create this by blending between the two data sources however as already discussed this

would result in very slow performance if there were a large number of IDs:

63

By right-clicking on the Name field and selecting “Edit Primary Aliases” we can do a one-time

mapping of the Name to the ID field as alias values:

We can now create the required visualisation without a blend which would be much faster:

Note that both primary groups and aliases are not dynamic and would need to be updated if the

data changed. Consequently they aren’t a great solution for frequently updated data but if you need

a quick mapping they can potentially eliminate the need for costly blends.

More information can be found in the following kbase article:

 http://tabsoft.co/1PRhkU9

Data integration
Data integration is a new feature, introduced in Tableau 10, that allows data sources to combine

data from multiple, potentially heterogeneous, data connections.

http://tabsoft.co/1PRhkU9

64

A key difference between data integration and data blending is that data integration is a row-level

join whereas data blending is performed on the aggregated result set from each data source. This

means data integration is sensitive to the size of the underlying data sources – there are 4 key

considerations:

 The more data we have to move, the longer it takes – data is extracted at the row level from

each data connection so the volume of data is a key factor;

 The further data must travel, the longer it takes – performance will be impacted if you are

joining to a data source that is on a high-latency connection;

 The slower the rate of data flow, the longer it takes – performance will be impacted if you

are joining to a data source that is on a bandwidth-constrained connection;

 The more things need to be matched, the longer it takes – similar to point 1, performance is

affected by the number of records we must join together.

In Tableau 10, data integration can only be used with extracted data sources – i.e. the results from

each data connection must be extracted into a TDE file. This extracted data source can then be

published to Tableau Server for others to use.

In Tableau 10 it is not possible to do data integration on live data sources, nor is it possible to do

data integration against published data sources. These are capabilities we are looking to add as

future enhancements.

Custom SQL
Sometimes users new to Tableau try to bring old-world techniques to their workbooks such as

creating data sources using hand-written SQL statements. In many cases this is counterproductive as

65

Tableau can generate much more efficient queries when we simply define the join relationships

between the tables and let the query engine write SQL specific to the view being created. However,

there are times when specifying joins in the data connection window does not offer all the flexibility

you need to define the relationships in your data.

Creating a data connection using a hand-written SQL statement can be very powerful but as Spider-

Man comics famously caution, “with great power comes great responsibility”. In some cases, custom

SQL can actually cause reduce performance. This is because in contrast to defining joins, custom SQL

is never deconstructed and is always executed atomically. This means no join culling occurs and we

can end up with situations where the database is asked to process the whole query just for a single

column, like this:

SELECT SUM([TableauSQL].[Sales])

FROM (

 SELECT [OrdersFact].[Order ID] AS [Order ID],

 [OrdersFact].[Date ID] AS [Date ID],

 [OrdersFact].[Customer ID] AS [Customer ID],

 [OrdersFact].[Place ID] AS [Place ID],

 [OrdersFact].[Product ID] AS [Product ID],

 [OrdersFact].[Delivery ID] AS [Delivery ID],

 [OrdersFact].[Discount] AS [Discount],

 [OrdersFact].[Cost] AS [Cost],

 [OrdersFact].[Sales] AS [Sales],

 [OrdersFact].[Qty] AS [Qty],

 [OrdersFact].[Profit] AS [Profit]

 FROM [dbo].[OrdersFact] [OrdersFact]

) [TableauSQL]

HAVING (COUNT_BIG(1) > 0)

It’s important to ensure that your custom SQL statement does not contain any unnecessary clauses.

For example, if your query contains GROUP BY or ORDER BY clauses these are generally going to be

overhead as Tableau will create its own clauses based on the structure of the visualisation. Eliminate

these from your query if possible.

A good recommendation is to use custom SQL in conjunction with data extracts. That way the

atomic query is only executed once (to load the data into the data extract) and all subsequent

analysis in Tableau is done using dynamic, optimised queries against the data extract. Of course, all

rules have exceptions and this one does too – when using custom SQL create a data extract UNLESS

your custom SQL contains parameters.

Using parameters in a custom SQL statement could in some cases make live connections more

performant as the base query can be more dynamic (e.g. filter clauses that use parameters will be

evaluated appropriately). It could also be used to pass in values for performance limiters such as TOP

or SAMPLE to constrain the amount of data returned by the database. However, if you are using a

data extracts it will be purged and regenerated every time you change the parameter and this can be

slow. Also be aware that parameters can only be used to pass in literal values so they cannot be used

to dynamically change the SELECT or FROM clauses.

Finally, it is also possible to join tables to custom SQL:

66

This allows you to write a more specific custom SQL that references a subset of the total schema.

The joins from this to the other tables can then (potentially) be culled like normal table joins,

creating more efficient queries.

Alternatives to custom SQL
Instead of using custom SQL directly in Tableau, it is sometimes preferable to move the query into

the underlying data source. In many cases this can improve performance as it allows the data source

to more efficiently parse the query, or it might mean a complex query only has to be run one time. It

also lends itself well to good management practices as it allows the single definition to be shared

across multiple workbooks and data sources.

There are several ways to do this:

Views
Almost all DBMS’s support the concept of views – a virtual table representing the result of a

database query. For some database systems, simply taking the query out of a custom SQL statement

and instantiating it in the database as a view results in significantly better performance. This is

because the query optimiser is able to generate a better execution plan than when the query is

wrapped in an outer SELECT statement. For more detail, see the following community discussion:

 http://tabsoft.co/1su5YMe

Defining custom query logic into a view instead of in the Tableau workbook also allows it to be

reused across multiple workbooks and data sources. Additionally, many DBMS’s support the concept

of materialised views or snapshots where the results of the view query are pre-computed and

cached, allowing for much faster responses at query time. They can be similar to summary tables

(see below) but are maintained by the DBMS automatically.

Stored procedures
Stored procedures are similar to views however they can contain much more complex logic and

potentially perform multiple steps of data preparation. They can also be parameterised, allowing

them to return a targeted set of data based on user input.

Stored procedures are supported in Sybase ASE, SQL Server and Teradata. To avoid running the

stored procedure multiple times for a single viz, Tableau executes the stored procedure and writes

the result set to a temp table in the database. The actual queries for the viz are then run against the

temp table. The execution of the stored procedure and population of the temp table is done on the

initial opening of the workbook and whenever the stored process parameters are changed. This

process can take some time and these interactions may be slow.

If you are extracting the results of a parameterised stored procedure into a data extract, the extract

will be purged and refreshed every time you change the parameter values.

More information on using stored procedures can be found in the Tableau online help:

http://tabsoft.co/1HAD93e

http://tabsoft.co/1su5YMe
http://tabsoft.co/1HAD93e

67

Summary tables
If you have a very large, detailed data set that you typically summarise when querying (e.g. you store

individual transactions but typically use the data summarised by day, region, customer, product,

etc.) then consider creating a summary table and using Tableau against it to achieve faster query

times.

Note – you can use Tableau data extracts to achieve a similar outcome by creating an aggregated

data extract. See the section on extracts for more detail.

Initial SQL
Another alternative to custom SQL (if your data source supports it) is to use the custom SQL

statement in an initial SQL block. You could use this to create a temporary table which will then be

the selected table in your query. Because initial SQL is executed only once when the workbook is

opened (as opposed to every time the visualisation is changed for custom SQL) this could

significantly improve performance in some cases.

Note that on Tableau Server an administrator can set a restriction on initial SQL so that it will not

run. You might need to check to see that this is OK in your environment if you are planning to

publish your workbook to share with others.

You can find more information on initial SQL in the online documentation:

 http://tabsoft.co/1AsJkXg

http://tabsoft.co/1AsJkXg

68

Is it my data?
One of the powerful features of Tableau is its ability to connect to data across many different

platforms. Broadly speaking these platforms can be characterised as one of the following:

 File-based data sources – such as Excel and CSV;

 Relational database data sources – such as Oracle, Teradata and SQL Server, as well as

specialised analytic appliances such as HP Vertica, IBM Netezza, etc;

 OLAP data sources – such as Microsoft Analysis Services and Oracle Essbase;

 “Big data” data sources – such as Hadoop;

 Cloud-based data sources – such as Salesforce, Google, etc.

Each type of data source has its own set of advantages and disadvantages, and is treated uniquely.

Note that Tableau Desktop is supported on both Windows and Mac OS X and the set of supported

data sources on Mac is not the same as on Windows. Minimising the differences between the

platforms is something Tableau will work towards but today there are some data sources that are

only supported on one platform.

General advice

Use native drivers
Tableau 10 supports native connectivity to over 40 different data sources. This means Tableau has

implemented techniques, capabilities and optimizations specific to these data sources. Engineering

and testing activities for these connections ensure they are the most robust Tableau has to offer.

Tableau also supports general-purpose ODBC for accessing data sources beyond the list of native

connectors. As a publicly defined standard, many database vendors make ODBC drivers available for

their databases and Tableau can also use these ODBC drivers to connect to data. There can be

differences in how each database vendor interprets or implements capabilities of the ODBC

standard. In some cases, Tableau will recommend or require you to create a data extract to continue

working with a particular driver. There will also be some ODBC drivers and databases that Tableau is

unable to connect to.

If there is a native driver for the data source you are querying, you should use this over the ODBC

connections as it will generally provide better performance. Also note that ODBC connections are

only available on Windows.

Test as close to the data as possible
As stated earlier, a general principal is that if a data source performs queries slowly then the

experience in Tableau will be slow. A good way to test the raw performance of the data source is to

(if possible) install Tableau Desktop on the machine where the data source resides and to run some

queries. This will eliminate factors such as network bandwidth and latency from the performance

and allow you to better understand the raw performance of the query in the data source.

Additionally, using the localhost name for the data source instead of the DNS name can help

determine if environmental factors such as slow name resolution or proxy servers are adding to the

poor performance.

Data sources

Files
This category covers all file-based data formats – text files such as CSV, Excel spreadsheets and MS

Access being the most common, however this also includes data files from statistical platforms SPSS,

69

SAS and R. Business users often use data in this format because it is a common way to get data out

of “governed” data sets – either by running reports or performing a query extract.

In general, it is best practice to import file-based data sources into the Tableau fast data engine. This

will make queries perform much faster and also results in a much smaller file to store the data

values. However, if the file is small or if you need a live connection to the file to reflect changing data

you can connect live.

Shadow extracts

When you connect to non-legacy Excel/text or statistical files, Tableau transparently creates an

extract file as part of the connection process. This is called a shadow extract and it makes working

with the data much faster than if you were to directly query the file.

You may notice that the first time you use a large file it can take several seconds to load the data

preview pane. This is because Tableau is extracting the data from the file and writing it to a shadow

extract file. By default, these files are created in

C:\Users\<username>\AppData\Local\Tableau\Caching\TemporaryExtracts with a hashed

name based on the pathname and date last modified of the data file. Tableau keeps shadow extracts

for the five most-recently used file data sources in this directory, deleting the least recently used file

when a new one is created. If you subsequently reuse a file that has a shadow extract, Tableau

simply opens the extract file and the data preview appears almost instantly.

Although shadow extract files contain underlying data and other information similar to the standard

Tableau extract, shadow extract files are saved in a different format (with a .ttde extension), which

means that they cannot be used the same way Tableau extracts are.

Legacy connectors for Excel and text files

In earlier versions of Tableau, connections to Excel and text files made use of Microsoft’s JET data

engine driver. Since Tableau 8.2 though, we default to a native driver that provides better

performance and works with larger, more complex files. However, there are some situations in

which you might prefer to use the legacy drivers – e.g. if you want to use custom SQL. In these

scenarios users have the option to revert back to the legacy JET driver. Note that reading MS Access

files still uses the JET driver.

A detailed listing of the differences between the two drivers can be found here:

http://tabsoft.co/1HACvmj

Note that the JET drivers are not available on Mac OS and therefore Tableau Desktop for Mac does

not support reading MS Access files, nor does it provide the legacy connection option for Excel and

text files.

Relational Databases
Relational data sources are the most common form of data source for Tableau users and Tableau

provides native drivers for a wide selection of platforms. These can be row or column based,

personal or enterprise, and accessed via native drivers or generic ODBC. This category technically

also includes Map-Reduce data sources as they are accessed through SQL access layers like Hive or

Impala, however we will discuss them in more detail in the “big data” section below.

There are many internal factors that impact query speed in a relational database systems (RDBMS).

Changing or tuning these will usually require assistance from your DBA, but can yield significant

performance improvements.

http://tabsoft.co/1HACvmj

70

Row-based vs. column-based

RDBMS systems come in two main flavours – row-based or columns-based. Row-based storage

layouts are well-suited for OLTP-like workloads which are more heavily loaded with interactive

transactions. Column-based storage layouts are well-suited for analytic workloads (e.g., data

warehouses) which typically involve highly complex queries over large sets of data.

Today, many high performing analytic solutions are based on column-based RDBMS and you may

find your queries perform faster if you use such a solution. Examples of column-based databases

supported by Tableau are Actian Vector, Amazon Redshift, HP Vertica, IBM Netezza, MonetDB,

Pivotal Greenplum, SAP HANA and SAP Sybase IQ.

SQL as an interface

There are many systems that are not based on traditional RDBMS technologies but still appear as a

relational source as they provide a SQL-based interface. For Tableau this includes several NoSQL

platforms (e.g. MarkLogic, DataStax, MongoDB, etc.) as well as query acceleration platforms such as

Kognitio, AtScale and JethroData.

Indexes

Correct indexing on your database is essential for good query performance:

 Make certain you have indexes on columns that are part of table joins.

 Make certain you have indexes on columns used in filters.

 Be aware that using discrete date filters in some databases can cause queries to not use

indexes on date and datetime columns. We’ll discuss this further in the filter section, but

using a range date filter will ensure the date index is used. For example, instead of using

YEAR([DateDim])=2010 express the filter as [DateDim] >= #2010-01-01# and [DateDim]

<= #2010-12-31#).

 Ensure you have statistics enabled on your data to allow the query optimiser to create high-

quality query plans.

Many DBMS environments have management tools that will look at a query and recommend indexes

that would help.

NULLS

Having NULL values in dimension columns can reduce the effectiveness of queries. Consider a viz

where we want to show the total sales by country for the top 10 products. Tableau will first generate

a subquery to find the top 10 products and then join this back to the query by country to produce

the final result.

If the product column is set to ALLOW NULL, we need to run a query to check if NULL is one of the

top 10 products returned by the subquery. If it is, we need to perform a NULL-preserving join which

is much more computationally expensive than a regular join. If the product column is set to NOT

NULL, we know that the result of the subquery cannot contain NULL so we can perform a normal

join, skipping the “check for NULL” query.

This is why, where possible, you should define your dimension columns as NOT NULL.

Referential Integrity

When you join multiple tables in a data source Tableau has a nifty (and generally invisible to the

user) feature called “join culling”. Since joins cost time and resources to process on the database

server, we really don’t want to enumerate every join that we declared in our data source all the

time. Join culling allows us to query only the relevant tables instead of all tables defined in your join.

71

Consider the following scenario where we have joined multiple tables in a small star schema:

With join culling, double-clicking on the Sales measure generates the following query:

SELECT SUM([OrdersFact].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[OrdersFact] [OrdersFact]

GROUP BY ()

Without it, a far less efficient query is generated:

SELECT SUM([OrdersFact].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[OrdersFact] [OrdersFact]

 INNER JOIN [dbo].[CustomerDim] [CustomerDim]

 ON ([OrdersFact].[Customer ID] = [CustomerDim].[Customer ID])

 INNER JOIN [dbo].[DeliveryDim] [DeliveryDim]

 ON ([OrdersFact].[Delivery ID] = [DeliveryDim].[Delivery ID])

 INNER JOIN [dbo].[LocationDim] [LocationDim]

 ON ([OrdersFact].[Place ID] = [LocationDim].[Place ID])

 INNER JOIN [dbo].[ProductDim] [ProductDim]

 ON ([OrdersFact].[Product ID] = [ProductDim].[Product ID])

 INNER JOIN [dbo].[TimeDim] [TimeDim]

 ON ([OrdersFact].[Date ID] = [TimeDim].[Date ID])

GROUP BY ()

All the dimension tables must be joined in order to ensure that correct measure sums are calculated

from the start. For example, if our fact table contained data for 2008-2012 but the time dimension

table only had values for 2010-2012, the result SUM([Sales]) would potentially change depending on

whether the time table is included.

72

In the past, “hard” referential integrity was required where the rule was enforced by the DBMS.

However, many customers have data sources where referential integrity is enforced either at the

application layer or through an ETL process - this is referred to as “soft” referential integrity. Users

can tell Tableau that soft referential integrity is in place and that join culling can be safely used by

enabling “assume referential integrity”:

Note that while Tableau can use either hard or soft referential integrity it is often much better to use

hard referential integrity because the database can do join culling too. For more information, see the

following series of articles by Russell Christopher on his Tableau Love blog:

http://bit.ly/1HACmPV

http://bit.ly/1HACqPn

Partitioning

Partitioning a database improves performance by splitting a large table into smaller, individual tables

(called partitions or shards). This means queries can run faster because there is less data to scan

and/or there are more drives to service the IO. Partitioning is a recommended strategy for large data

volumes and is transparent to Tableau.

Partitioning works well for Tableau if it is done across a dimension – e.g. time, region, category, etc.

– that is commonly filtered so that individual queries only have to read records within a single

partition.

Be aware that for some databases, “range of date” filters (not discrete filters) are necessary to

ensure the partition indexes are correctly used – otherwise a full table scan can result with

extremely poor performance.

Temp Tables

There are many operations in Tableau that can result in the use of temp tables – e.g. creating ad-hoc

groups and sets, and performing data blending. It is recommended that you grant your users

permission to create and drop temp tables, and ensure your environment has sufficient spool space

for the queries they are running.

OLAP
Tableau supports several OLAP data sources:

 Microsoft Analysis Services

http://bit.ly/1HACmPV
http://bit.ly/1HACqPn

73

 Microsoft PowerPivot (both PowerPivot for Excel and PowerPivot for SharePoint)

 Oracle Essbase

 SAP Business Warehouse

 Teradata OLAP

There are functional differences when connecting to OLAP versus relational due to the underlying

language differences between MDX/DAX and SQL. The key points to keep in mind are that both have

the same user interface in Tableau, the same visualisations, and the same expression language for

calculated measures. The differences are mostly to do with metadata (how and where it is defined),

filtering, how totals and aggregations work and how the data source can be used in data blending.

More details on the differences using Tableau over relational data sources vs. OLAP data sources can

be found in the following knowledge base article:

http://tabsoft.co/1HAF47P

SAP BW data extracts

SAP BW is unique among our OLAP data sources because you can extract data from SAP BW cubes

into Tableau’s data engine (note – this requires a special keycode that can be obtained from

Tableau). Tableau retrieves leaf level nodes (not drill-through level data) and makes them into a

relational data source. Since multidimensional to relational transformation does not preserve all

cube structures, switching back and forth between extract and live connection freely without

impacting the state of your visualisation is not supported for cube extracts. You will need to make

your choice before you start building up your viz. However, you don’t have to decide on everything

upfront. You can switch between alias options (key, long name etc.) after the extraction.

More detail on creating SAP BW extracts can be found here:

 http://tabsoft.co/1SuYf9d

Big Data
Big data is a heavily overloaded term in the world of data analysis, however in this document we are

particularly using it to refer to platforms that are based on Hadoop. In Tableau 10 there are four

supported Hadoop distributions that support Hive and/or Impala connections:

 Amazon EMR

o HiveServer

o HiveServer2

o Impala

 Cloudera Hadoop

o HiveServer

o HiveServer2

o Impala

 Hortonworks Hadoop Hive

o HiveServer

o HiveServer2

o Hortonworks Hadoop Hive

 MapR Hadoop Hive

o HiveServer

o HiveServer2

http://tabsoft.co/1HAF47P
http://tabsoft.co/1SuYf9d

74

 Spark SQL

o SharkServer *

o SharkServer2 *

o SparkThriftServer

* Note that SharkServer and SharkServer2 connections are provided for your use, but are not

supported by Tableau.

Hive acts as a SQL-Hadoop translation layer, translating the query into MapReduce which is then run

over HDFS data. Impala executes the SQL statement directly on HDFS data (bypassing the need for

MapReduce). Tableau also supports Spark SQL, an open source processing engine for big data that

can perform up to 100x faster than MapReduce by running in-memory rather than on-disk.

Impala is generally much faster than Hive and Spark is proving to be faster still.

Even with these additional components, Hadoop is often not sufficiently responsive for analytical

queries like Tableau creates. Tableau data extracts are often used to improve query response times -

more information on extracts and how they can be used with “big data” is discussed later.

Further details for improving performance against Hadoop data sources can be found here:

 http://tabsoft.co/1BkFo62

Cloud
Tableau currently supports the following cloud data sources:

 Salesforce.com

 Google Analytics

 oData (including Windows Azure Marketplace DataMarket)

This first group of sources read a set of data records from a web service and load them into a

Tableau data extract file. “Connect live” is not an option for these data sources, however the extract

file can be refreshed to update the data it contains. Using Tableau Server, this update process can be

automated and scheduled.

Tableau also supports the following cloud-based data platforms:

 Amazon Aurora

 Amazon Redshift

 Amazon RDS

 Google BigQuery

 Google Cloud SQL

 Google Sheets

 Microsoft Azure SQL Data Warehouse

 Snowflake

In contrast to the previous group of data sources, these operate like relational data sources and

allow both live connections and extracts. We will not cover them further here (refer to the relational

data source section above) other than to point out you will generally want to keep these as live

connections to avoid transferring large volumes of data from the cloud.

Finally, Tableau also provides a generic data connector for importing data from web-based services

that publish data in JSON, XML, or HTML formats – the Web Data Connector.

http://tabsoft.co/1BkFo62

75

Salesforce

When connecting to Salesforce the following limitations of the connector need to be considered:

There is no “connect live” option

There are several reasons we chose to go with extract-only instead of a live connection, including:

 Performance – live analytic queries against Salesforce are (in general) slow.

 API quotas - Hitting Salesforce live too often can cause an account to be suspended if the

daily quota is hit. By extracting, we make efficient use of APIs to minimize the number of

API calls required and avoid hitting limits. To maintain optimum performance and ensure

that the Force.com API is available to all of their customers, Salesforce.com balances

transaction loads by imposing two types of limits: Concurrent API Request

Limits (http://sforce.co/1f19cQa) and Total API Request Limits (http://sforce.co/1f19kiH).

The initial extract can be very slow

The first time you extract the data out of Salesforce, it could take a while based on table size,

force.com load, etc. This is because objects are downloaded in their entirety.

Join options are limited

When choosing the multiple table option, be aware that you can only join objects on their PK/FK

keys (left and inner join only).

You cannot pre-filter data

There is no ability to pre-filter the data through the Salesforce connector. If this requirement is

critical for you, you could use a third party Salesforce ODBC driver (for example from Simba, or

DataDirect) that supports live connections. You could then take an extract against this connection.

DBAmp also provide a solution which allows you to dump Salesforce data into SQL Server database.

You could then connect to Tableau via the SQL Server connector.

Formula columns cannot be migrated over

If you have calculated fields, you will need to recreate them in Tableau after you extract the data.

There is a 10k character limit on queries

The Force.com API restricts queries to 10,000 total characters. If you are connecting to one or more

tables that are very wide (lots of columns with potentially long column names), you may hit that

limit when trying to create an extract. In these cases, you should select fewer columns to reduce the

size of the query. In some cases, Salesforce.com may be able to increase this query limit for your

company. Contact your Salesforce administrator to learn more.

Google Analytics

Google Analytics (GA) will sample your data when a report includes a large number of dimensions or

a large amount of data. If your data for a particular web property within a given date range exceeds

(for a regular GA account) 50,000 visits, GA will aggregate the results and return a sample set of that

data. When GA has returned a sample set of that data to Tableau, Tableau will display the following

message on the bottom right-corner of a view:

“Google Analytics returned sampled data. Sampling occurs when the connection includes a large

number of dimensions or a large amount of data. Refer to the Google Analytics documentation to

learn more about how sampling affects your report results.”

http://sforce.co/1f19cQa
http://sforce.co/1f19kiH

76

It is important to know when your data is being sampled because aggregating certain sample sets of

data can cause highly skewed and inaccurate inferences. For example, suppose you aggregate a

sample set of data that describes an unusual category of your data. Inferences on the aggregated

sample set may be skewed because there are an insufficient number of samples contained in that

category. To build GA views that allow you to make accurate inferences about your data, ensure that

you have a large enough sample within the category that you are making inferences about. The

recommended minimum sample size is 30.

For information about adjusting the GA sample size and more information about GA sampling, refer

to the GA documentation:

 http://bit.ly/1BkFoTG

To avoid sampling, there are two approaches to take:

 Run multiple GA reports at the session or hit level to break the data into unsampled chunks.

You would then download the data to an Excel file and use Tableau’s extract engine to “add

data from data source…” to reassemble the data into a single dataset.

 Upgrade your GA to a Premium account – this increases the number of records that can be

included in a report. This will make it much easier to chunk the data down for analysis.

Looking forward, Google has announced that they will be enabling GA Premium customers

to export their session and hit level data to Google BigQuery for further analysis. This would

be a much simpler approach as Tableau can connect directly to BigQuery.

Finally, note that the API that Tableau uses to query GA limits the query to a maximum of 7

dimensions and 10 measures.

Web data connector

A Tableau web data connector gives you a way to connect to data that doesn't already have a

connector. Using a web data connector, you can create and use a connection to almost any data that

is accessible over HTTP. This can include internal web services, JSON data, XML data, REST APIs, and

many other sources. Because you control how the data is fetched, you can even combine data from

multiple sources.

You create a web data connector by writing a web page that contains JavaScript and HTML. After

you’ve written a web data connector, you can share it with other Tableau users by publishing it to

Tableau Server.

To help you create web data connectors, we have created a software development kit (SDK) that

includes templates, example code, and a simulator that lets you test web data connectors. This

documentation also includes a tutorial that walks you through how to create a web data connector

from scratch. The web data connector SDK is an open source project. For more information, see the

Tableau webdataconnector page on GitHub.

More information on web data connectors is available here:

 http://tabsoft.co/1NnGsBU

Data preparation
The data we need to use in our workbooks is sometimes not perfect. It may not be clean; it may not

be the right shape; and it might be spread across multiple files or databases. Historically, Tableau

http://bit.ly/1BkFoTG
http://tabsoft.co/1NnGsBU

77

worked best when it was fed with clean, normalised data which meant that you sometimes needed

to prepare your data using other tools before you loaded it into Tableau.

This is no longer always the case – Tableau now has multiple features to help load messy data. These

features include:

 Pivot

 Union

 Data interpreter

 Merge columns

Performing data preparation on the fly a) helps keep you in the flow of your analysis and b) allows

users without access to other tools to continue analysing their data in Tableau. However, these

operations are generally computationally expensive (especially over large volumes of data) and they

can have performance implications for report users. It is recommended that where possible you use

a data extract to materialise the data after using these operations.

You should also consider these capabilities to be complementary to existing ETL processes and

consider if pre-processing the data upstream of Tableau is a better and more efficient approach if

the data is used across multiple reports or shared with other BI tools.

Data extracts
So far we have discussed techniques for improving the performance of data connections where the

data remains in the original format. We call these live data connections and in these cases we are

dependent on the source data platform for both performance and functionality. In order to improve

performance with live connections, it’s often necessary to make changes to the data source and for

many customers this is simply not possible.

An alternative available to all users is to leverage Tableau’s fast data engine and to extract data from

the source data system into a Tableau Data Extract. This is for most users the quickest and easiest

way to significantly improve the performance of a workbook over any data source.

An extract is:

 A persistent cache of data that is written to disk and reproducible;

 A columnar data store – a format where the data has been optimised for analytic querying;

 Completely disconnected from the database during querying. In effect, the extract is a

replacement for the live data connection;

 Refreshable, either by completely regenerating the extract or by incrementally adding rows

of data to an existing extract;

 Architecture-aware – unlike most in-memory technologies it is not constrained by the

amount of physical RAM available;

 Portable – extracts are stored as files so can be copied to a local hard drive and used when

the user is not connected to the corporate network. They can also be used to embed data

into packaged workbooks that are distributed for use with Tableau Reader;

 Often much faster than the underlying live data connection.

Tom Brown at The Information Lab has written an excellent article explaining several use cases

where extracts provide benefit (make sure you also read the comments for additional examples

from other users):

78

 http://bit.ly/1F2iDnT

There is one important point to make about data extracts – they are not a replacement for a data

warehouse, rather a complement. While they can be used to collect and aggregate data over time

(i.e. incrementally add data according to a periodic cycle) this should be used as a tactical, rather

than long term, solution. Incremental updates do not support update or delete actions to records

that have already been processed – changing these requires a full reload of the extract.

Finally, extracts cannot be created over OLAP data sources such as SQL Server Analysis Services, or

Oracle Essbase. The exception to this rule is that you can create extracts from SAP BW (see the

relevant section above).

When to use extracts? When to use live connections?
Like everything, there’s a time and a place for data extracts. The following are some scenarios where

extracts may be beneficial:

 Slow query execution - if your source data system is slow to process the queries being

generated by Tableau Desktop, creating an extract may be a simple way to improve

performance. The extract data format is inherently designed to provide fast response to

analytic queries so in this case you can think of the extract as a query acceleration cache. For

some connection types this is a recommended best practice (e.g. large text files, custom SQL

connections) and some sources will only work in this model (see the section on cloud data

sources).

 Offline analysis - if you need to work with data while the original data source is not available

(e.g. you are disconnected from the network while travelling or working from home). Data

extracts are persisted as a file which can easily be copied to a portable device such as a

laptop. It is a simple matter to switch back and forth between an extract and a live

connection if you move on and off the network.

 Packaged workbooks for Tableau Reader/Online/Public - if you are planning to share your

workbooks for other users to open them in Tableau Reader or if you are planning to publish

them to Tableau Online or Public, you will need to embed the data into a packaged workbook

file. Even if the workbook uses data sources that can also be embedded (i.e. file data sources)

data extracts inherently provide a high level of data compression so the resulting packaged

workbook is significantly smaller.

 Additional functionality - for some data sources (e.g. file data sources via the legacy JET

driver) there are functions in Tableau Desktop that are not supported (e.g. median/count

distinct/rank/percentile aggregations, set IN/OUT operations, etc.). Extracting the data is a

simple way to enable these functions.

 Data security - if you wish to share a subset of the data from the source data system, you can

create an extract and make that available to other users. You can limit the fields/columns you

include as well as share aggregated data where you want users to see summary values but

not the individual record-level data.

Extracts are very powerful, but they are not a silver bullet for all problems. There are some scenarios

where using extracts might not be appropriate:

 Real-time data - because extracts are a point of time snapshot of data they would not be

appropriate if you need real-time data in your analysis. It is possible to automatically refresh

extracts using Tableau Server and many customers do this at intra-day frequencies but true

real-time data access would require a live connection.

http://bit.ly/1F2iDnT

79

 Massive data - if the volume of data you need to work with is massive (the definition of

“massive” will vary from user to user but generally it will be millions to billions of records)

then extracting this may not be practical. The resulting extract file may be excessively large or

the extract process may take many, many hours to complete. Note that there are a couple of

exceptions to this guideline. If you have a massive source data set but you are going to work

over a filtered, sampled and/or aggregated subset of this data, then using an extracts may

actually be a great idea. Generally speaking, the Tableau extract engine was designed to work

well for up to a few hundred million records but this will be influenced by the shape and

cardinality of your data.

 Pass-through RAWSQL functions - if your workbook uses pass-through functions these will

not work with a data extract.

 Robust user-level security - if you have a requirement for robustly-enforced, user-level

security then this needs to be implemented in the data source. If you have user-level filters

applied at the workbook level, these can always be removed by a user allowing them access

to all data in the extract. The exception to this guideline is if the extract has been published

to Tableau Server with data source filters defined and other users are accessing this extract

via the data server. Note - you will need to ensure that download permissions are revoked

from users to ensure they cannot bypass the enforced filters.

Creating extracts in Tableau Desktop
In most cases the initial creation of an extract is done in Tableau Desktop and is very simple. After

you have connected to your data, go to the Data menu and click “Extract Data” – then accept the

defaults on the dialog box (although more on this later). Tableau will ask where you want to save

the extract – choose any location to save the file, although Tableau will probably direct you towards

‘My Tableau Repository | Datasources’ which is just fine too!

Now wait for the extract to be created, how long you’ll wait depends on the database technology

being used, network speed, data volumes, etc. It is also dependent on the speed and capacity of

your workstation as creating an extract is a memory and processor intensive activity.

You’ll know it’s done when the data source icon changes – it will have another database icon behind

it, representing a ‘copy’, which is exactly what an extract is.

When you create an extract this way (via Tableau Desktop) the processing occurs on your

workstation and so you will need to ensure it has sufficient capacity to complete the task. Extract

creation uses all resource types – CPU, RAM, disk storage, network I/O – and processing large data

volumes on a small PC can result in errors if any are exhausted. It is recommended that large

extracts be done on a suitable workstation – fast CPU with multiple cores, lots of RAM, fast I/O, etc.

80

The extract creation process requires temp disk space to write working files – up to 2x the final

extract file size. This working space is allocated in the directory specified by the TEMP environment

variable (usually C:\WINDOWS\TEMP or C:\Users\USERNAME\AppData\Local\Temp). If this drive has

insufficient space, point the environment variable to a larger location.

If it is impossible (or just impractical) to do an initial extract process on a workstation, the following

workaround can be done to create an empty extract that is then published to Tableau Server. Create

a calculated field that has DateTrunc(“minute”, now()) in it. Then add it to the extract filters and

exclude the single value it shows – be quick because you have a minute before this filter is no longer

valid. If you need longer just make the publishing interval wider (e.g. round to 5 mins or 10 mins or

an hour if you need). This will build an empty extract on your desktop. When you publish to server

and trigger the refresh schedule, it will populate the full extract since the timestamp we excluded is

not the same anymore.

Creating extracts using the data extract API
Tableau also provides an application programming interface (API) to enable developers to directly

create a Tableau Data Extract (TDE) file. Developers can use this API to generate extracts from on-

premises software and software-as-a-service. This API lets you systematically get data into Tableau

when there is not a native connector to the data source you are using.

This API is available for developers in Python and C/C++/Java on both Windows and Linux. You can

find more information on the API here:

http://tabsoft.co/1Sv1n55

Creating extracts using 3rd party tools
Many 3rd party tool developers have used the data extract API to add native TDE output to their

applications. These applications include analytic platforms like Adobe Marketing Cloud as well as ETL

tools like Alteryx and Informatica.

If you have complex data preparation requirements, tools like Alteryx and Informatica can be used

to efficiently perform the ETL stages and then directly output the prepared data into a TDE file for

use in Tableau Desktop.

Aggregate extracts
Using an aggregate extract can always improve performance. Even if you’re on Teradata or Vertica

with huge amounts of data, extracting data can provide an improvement, as long as you aggregate

and filter the data appropriately. For example, you can filter the data if you are concerned with only

the most recent data.

You can define the extract ahead of time by choosing which fields you want and selecting the

“Aggregate data for all visible dimensions” check box in Tableau Desktop’s Extract Data dialog box.

Alternatively, after doing your analysis and building your dashboard, when you are ready to publish,

you can go back into the Extract Data dialog box and click the button for Hide All Unused Fields. Then

when you extract the data, it will be the absolute minimum required to create the view.

http://tabsoft.co/1Sv1n55

81

Creating aggregate extracts is a very powerful technique when you have a large amount of base data

but you need to create summary views that query across the whole data set. For example, you might

have a billion records of detailed transaction data representing 10 years of sales and you want to

start by showing the overall 10 year sales trend. The query for this initial view would potentially be

slow as it needs to query across all billion rows. By creating an extract that is aggregated at the

yearly level we can reduce the query effort required at view time as we will only have 10 numbers in

the extract. Of course this is an oversimplified example – in reality you would have more dimensions

than just time but the effect of significantly reducing the number of records that need to be queried

at view time.

We can create quite sophisticated workbooks that have multiple levels of detail by creating multiple

aggregated extracts, each tuned to support a specific level of detail, or by combining aggregated

extracts with live connections. For example, you might have a set of initial summary views that use a

highly aggregated extract but when you drill to detail you use action filters from the summary views

to another sheet that connects via a live connection. This means that the summary views will be fast

as they don’t need to trawl over the full base data set, but also we don’t need to extract all the base

data to support the drill down actions. Also, the live connection will perform quickly because at the

drill down level we are only accessing a small set of records.

In this way, you can mix and match, and aggregate at different levels to resolve nearly any

performance issues so that get the results as fast as necessary. Since Tableau is efficient with

memory, improving performance this way is usually relatively easy and you can have multiple

extracts running at the same time.

Optimising extracts
Tableau Server not only optimises the physical columns that are in the database, but the additional

columns that are created in Tableau. These columns include the results of deterministic calculations,

such as string manipulations and concatenations, where the result is never going to change, as well

as groups and sets. The results of non-deterministic calculations, such as those that involve a

parameter or aggregations (such as sum or average) that are calculated at runtime, cannot be

stored.

A user might refresh an extract after adding only two rows of data, and notice that the size of the

extract has jumped from 100 MB to 120 MB. This jump in size is due to optimisation creating

additional columns containing calculated field values, because it is cheaper to store data to disk than

to recalculate it every time that data is needed.

82

One thing to watch out for is if you are making duplicate copies of a connection to a data extract,

you need to ensure that all calculated fields exist in the connection you select for the “Optimize” or

“Refresh” options, otherwise Tableau will not materialise fields which it thinks are unused. A good

habit is to define all calculated fields in the primary data source and copy them as necessary to the

other connections and then only ever refresh or optimise the extract from the primary data source.

Caveat: a trusted resource in our development team passed on the comment that although it

is possible to create multiple connections to a single TDE, it was never really developed to

support this. It can cause lots of problems if the connections get out of sync with the TDE

structure. His advice – just don’t do it.

Refreshing extracts
In Tableau Desktop, to refresh an extract you make a menu selection (Data menu > [your data

source] > Extract > Refresh), which updates the data and adds any new rows. But in Tableau Server,

during or after the publishing process, you can attach a schedule defined by an administrator to

refresh the extract automatically. The smallest schedule increment allowed is every 15 minutes; the

schedule can be to refresh at the same time daily, weekly, and so on. You can set up a “moving

window” to continually refresh the data to just the most recent.

Note: If you want to refresh your data more often than every 15 minutes, you should consider

connecting to live data, or set up a synchronised report database.

You can choose two refresh schedules for a single extract:

 An incremental refresh just adds rows, and does not include changes to existing rows.

 A full refresh discards the current extract and regenerates a new one from scratch from the

data source.

What happens if the refresh takes longer than the increment?
If the refresh time for an extract takes longer than the increment, then the intervening refreshes are

skipped. For example, the schedule is set to refresh the data every hour, but the amount of data is

so large that the refresh takes an hour and a half. Then:

 The first refresh starts at 1:00 and finishes at 2:30.

 The next refresh is schedule to start at 2:00 but because the first is still running it is skipped.

 The next refresh starts at 3:00 and finishes at 4:30.

Extract maintenance
The Maintenance screens show what Background tasks are currently running, as well as those that

have run for the past 12 hours. Colour coding is used to show the status of those tasks. The

Maintenance screens are available to administrators and, with the appropriate permissions, to some

other users, who can have permissions to initiate an ad hoc update to an extract. Also, for example,

if a database is going to load, you can set a trigger to initiate an extract after the database finishes

loading.

83

You also can refresh a workbook incrementally or fully via the tabcmd command line tool if you are

using Tableau Server or the Tableau.exe command line if you are using Tableau Desktop. If you have

complex scheduling requirements you can invoke this from an external scheduling tool such as the

Windows Task Scheduler. This approach is required if you want a refresh cycle that is shorter than

the 15 minute minimum allowed through the Tableau Server interface.

Finally, for users of Tableau Online, you can use the Tableau Online sync client to keep on-prem data

sources up-to-date via schedules defined on the Online service. You can find more information on

this utility here:

http://tabsoft.co/1fD1NXP

Data governance
While not a data source in itself, another way to connect to data sources is via Tableau Server’s data

server. The data server supports both live connections as well as data extracts and provides several

advantages over standalone data connections:

 As the metadata is stored centrally on the Tableau Server it can be shared across multiple

workbooks and across multiple authors/analysts. The workbooks retain a pointer to the

centralised metadata definition and each time they are opened they check to see if there

have been any changes made. If so, the user is prompted to update the copy embedded in

the workbook. This means that changes to business logic only need to be made in one place

and they can then be propagated across all dependent workbooks.

 If the data source is a data extract, it can be used across multiple workbooks. Without the

data server, each workbook will contain its own local copy of the extract. This reduces the

number of redundant copies which in turn reduces the required storage space on the server

as well as any duplicate refresh processes.

http://tabsoft.co/1fD1NXP

84

 If the data source is a live connection, the drivers for the data source do not need to be

installed on every analyst’s PC, only the Tableau Server. The data server acts as a proxy for

queries from Tableau Desktop.

85

Is it the environment?
There are times when a workbook will perform well in single-user testing but when deployed to

Tableau Server (or Tableau Online) for many users to consume, it performs poorly. The following

section identifies areas where the differences between single- and multi-user scenarios can make a

difference.

Upgrade
The development team at Tableau are constantly working to improve the performance and usability

of our software. Upgrading to the latest release of Tableau Server can sometimes yield significant

improvements in performance and stability without requiring any changes workbook.

Check the Tableau Release Notes page and upgrade to the most recent build you can:

 http://tabsoft.co/1Xwjtqk

Test Tableau Desktop on the Server
Sometimes you might find yourself in the situation where you have a workbook that performs well

when run in Tableau Desktop on your workstation but runs poorly when viewed through Tableau

Server. Opening the workbook with a copy of Tableau Desktop installed on the Tableau Server

machine can help determine if it is an issue with your workbook or if it is a configuration issue with

the server. This approach can identify if it is a driver incompatibility issue, or if there is a problem

with the network such as bad routing, DNS or proxy configurations.

Separate refreshes and interactive workloads
If server performance is slow, use the Background Tasks administrative view to see your current

refresh task schedules.

If you can schedule refreshes for off-peak hours, do so. If your hardware configuration permits you

can also move the Backgrounder process(es) to a dedicated worker node.

Monitor and tune your Server
Tableau Server comes with several views for administrators, to help monitor activity on Tableau

Server. The views are located in the Analysis table on the server’s Maintenance page:

http://tabsoft.co/1Xwjtqk

86

More information on these views can be found at the following link:

http://tabsoft.co/1RjCCL2

Additionally, custom administrative views can be created by connecting to the PostgreSQL database

that makes up part of the Tableau repository. Instructions can be found here:

http://tabsoft.co/1RjCACR

Check the VizQL session timeout limit
The default VizQL session timeout limit is 30 minutes. Even if a VizQL session is idle, it is still

consuming memory and CPU cycles. If you can make do with a lower limit, use tabadmin to change

the vizqlserver.session.expiry.timeout setting:

http://tabsoft.co/1f17Bd6

Assess your process configuration
Tableau Server is divided into many different components called services. While their default

configuration is designed to work for a broad range of scenarios, you can also reconfigure them to

achieve different performance goals. Specifically, you can control on which machines the processes

run and how many are run. See Improving Server Performance for guidelines for one-, two-, and

three-machine deployments:

http://tabsoft.co/1f17tKK

Infrastructure

64-bit
Versions of Tableau Server prior to Tableau 10 can run on 32-bit Microsoft operating systems,

however customers are strongly advised to install their production environments using the 64-bit

version. 32-bit installations are only recommended for DEV/TEST installations.

From Tableau 10 and onwards, Tableau Server is only available as a 64-bit application.

Add more CPU/RAM
Regardless of whether you’re running Tableau Server on one machine or several, the general rule is

that more CPU cores and more RAM will give you better performance. Make sure you meet Tableau

Server’s recommended hardware and software requirements (http://tabsoft.co/1I0RDNs) and

see When to Add Workers & Reconfigure (http://tabsoft.co/1I0RBVL) to assess whether you should

add additional machines.

http://tabsoft.co/1RjCCL2
http://tabsoft.co/1RjCACR
http://tabsoft.co/1f17Bd6
http://tabsoft.co/1f17tKK
http://tabsoft.co/1I0RDNs
http://tabsoft.co/1I0RBVL

87

TabMon (mentioned earlier in this document) is an excellent tool for collecting utilisation data that

can help your capacity planning process.

Don’t disregard IO
Some actions of Tableau are heavily IO intensive (e.g. loading/creating/refreshing a data extract) and

will benefit from the use of SSDs over rotational disks. Russell Christopher has done a couple of

fantastic posts on his Tableau Love blog that explores the impact of # cores, CPU speed and IOPS on

overall performance. While his experiment was done on AWS it is applicable to all environments:

http://bit.ly/1f17oa3

http://bit.ly/1f17n5O

Physical vs. virtual
Many customers are now deploying Tableau Server on virtualised infrastructure. Virtualisation

always has a performance overhead so it will not be as fast as installing on bare metal, however

modern hypervisor technology has reduced this overhead significantly.

When installing on virtual machines it is important to ensure that Tableau Server is given dedicated

RAM and CPU resources. If it is contesting with other virtual machines for resources on the physical

host, performance can be significantly affected.

A good resource for tuning virtual deployments is the “Deploying Extremely Latency-Sensitive

Applications in vSphere 5.5” whitepaper from VMWare. Page 15 gives a high level list of the best

practices for latency sensitive applications:

http://vmw.re/1L4Fyr1

Browser
Tableau heavily utilises JavaScript so the speed of the JavaScript interpreter in the browser has an

impact of the speed of rendering. For modern browsers it’s a close race in a rapidly evolving field,

but it pays to consider whether the version and performance of your browser can be affecting your

experience.

http://bit.ly/1f17oa3
http://bit.ly/1f17n5O
http://vmw.re/1L4Fyr1

88

Conclusion
As someone wise once said (and advised me for this document) – “tell ‘em what you’re going to tell

‘em, tell ‘em, then tell ‘em what you told ‘em”. Sage advice, indeed.

So again, here are the key points I hope you take away from reading this document:

 There is no silver bullet. Performance can be slow for a number of reasons. Collect data to

help identify where the time is going. Then focus your improvements in the most expensive

area, then move to the next area, and so on. Stop when it’s fast enough or the effort/reward

ratio is no longer viable.

 Many slow dashboards are caused by poor design. Keep it simple. Don’t try to show too

much at once and use guided analysis designs where possible.

 Don’t work with data you don’t need. Use filters, hide unused fields and aggregate.

 Try not to fight against the data engine. It’s smart and it’s trying to help you, so trust that it

will generate efficient queries.

 The cleaner your data is and the better it matches the structure of your questions, the faster

your workbooks will run and the happier your life will be.

 Extracts are a quick and easy way to make most workbooks run faster. If you don’t need

real-time data and aren’t working over billions of rows of data, you should try them.

 Strings and dates are slow, numbers and Booleans are fast.

 Although this document is based on the best advice from a lot of smart people, its

recommendations are just that – recommendations. You will need to test which ones will

improve performance in your specific case.

 When you are working with small data volumes much of this won’t matter – you can just

brute force through bad technique. But it doesn’t hurt to follow these recommendations in

all your workbooks as you never know when your data will grow.

 Practice makes perfect.

Now go forth, and make lots of efficient workbooks!

